TRANSPORTATION IMPACT STUDY FOR THE PITTSBURGH TECHNOLOGY CENTER (PTC) GARAGE 3 DEVELOPMENT

Pittsburgh Technology Center 3000 Technology Drive

City of Pittsburgh Allegheny County, Pennsylvania

Prepared for:

Mr. Martin Busser, AIA, NCARB Indovina Associates Architects

3185 Penn Avenue

Pittsburgh, Pennsylvania 15201

Prepared by:

Civil & Environmental Consultants, Inc.

Mr. Chris A. Droznek II, P.E.

333 Baldwin Road

Pittsburgh, Pennsylvania 15205

(412) 249-3177

TABLE OF CONTENTS

<i>1.0</i>	INTR	RODUCTION AND EXECUTIVE SUMMARY	1
	1.1 Purpos	se of Report and Study Objectives	2
	1.2 Execu	tive Summary	2
	1.2.1	Site Location and Study Area	2
	1.2.2	Development Description	2
	1.2.3	Land Development Control Status	2
	1.2.4	Principal Findings	3
	1.2.5	Recommendations	5
2.0	PROI	POSED DEVELOPMENT	6
	2.1 Summ	nary of Development	7
	2.1.1	Location	7
	2.1.2	Development Plan	7
	2.2 Land I	Development Control Status	7
	2.2.1	Existing and Proposed Zoning.	7
	2.2.2	Subdivision	7
3.0	AREA	A CONDITIONS	8
	3.1 Study	Area	9
	3.1.1	Area of Influence and Significant Traffic Impact	9
	3.2 Study	Area Land Use	9
	3.2.1	Existing Land Use	9
	3.2.2	Anticipated Future Developments	9
	3.2.3	Existing Zoning and Anticipated Changes	10
	3.2.4	Existing Travel Mode Splits	10
	3.3 Site A	accessibility	11
	3.3.1	Public and Private Roadway Systems	11
	3.3.1.1	Existing Area Roadway System	11
	3.3.1.2	Future Area Roadway Systems	12
	3.3.1.3	Existing Transit Routes and Service	13
	3.3.1.4	Existing Multi-Use Trail System	13
	3.3.2	Existing Traffic Volumes	13
	3.3.2.1	Data Collection	13
	3.3.2.2	Automatic Traffic Recorder Counts	14
	3.3.2.3	Peak Hours	14
	3.3.2.4	Peak Hour Traffic Volumes	14

	3.3.2.5	2018 Existing Conditions – Intersection Levels of Service	14	
4.0	<i>PRO.</i> 16	JECTED TRAFFIC VOLUMES AND INTERSECTION CAPACITY ANALYS	SIS	
	4.1 Site Generated Traffic –Background Developments			
	4.1.2	Vehicular Trip Arrival and Departure Distributions – Background Developments	18	
	4.1.3	Vehicular Trip Assignment – Determination of Site Generated Traffic	18	
	4.2 Site Generated Traffic –PTC Master Plan Developments			
	4.2.2	Bicycle Trip Generation	19	
	4.2.3	Pedestrian Trip Generation	19	
	4.2.4	Vehicular Trip Arrival and Departure Distributions – PTC Master Plan Developments	s 20	
	4.2.5	Vehicular Trip Assignment – Determination of Site Generated Traffic	20	
	4.2 Backg	round Traffic (Base Traffic)	20	
	4.2.2	2021 Opening Year No-Build (Base) Conditions Traffic Volumes (Without Developm 20	nent)	
	4.2.3	2021 Opening Year No-Build Base Conditions - Intersection Levels of Service	21	
	4.3 Build Traffic Volumes (With Development)			
	4.3.2 Opening Year 2021 Build Conditions (With PTC Master Plan Developments)- Intersections Levels of Service			
	4.3.3 Design Year 2031 No-Build (Base) Conditions Traffic Volumes (Without Developme 23			
	4.3.4	Design Year 2031 No-Build (Base) Conditions – Intersections Levels of Service	23	
	4.3.5 Devel	Design Year 2031 Build Conditions Traffic Volumes (With PTC Master Plan opments)	23	
	4.3.6 Interse	Design Year 2031 Build Conditions (With PTC Master Plan Developments) – ections Levels of Service	24	
5.0	SUPF	PLEMENTARY ANALYSES	26	
	5.1 Parking Analysis			
	5.2 Loading Analysis			
	5.3 Queuing Analysis			
	5.4 Traffic Signal Warrants			
	5.5 Auxiliary Turn Lane Warrants			
	5.6 Transp	portation Demand Management Plan	28	
6.0	CON	CLUSIONS AND RECOMMENDATIONS	29	
		usions and Recommendations		

<u>Tables</u>	
Table 1	Capacity Analysis Summary AM Peak Hour
Table 2	Capacity Analysis Summary PM Peak Hour
Table 3	Trip Generation Summary
Table 4	95 th Percentile Queue Analysis Summary AM Peak Hour
Table 5	95 th Percentile Queue Analysis Summary PM Peak Hour
<u>Figures</u>	
Figure 1	Site Location
Figure 2	Study Intersections
Figure 3	Site Plan / PTC Master Plan Developments
Figure 4	Port Authority of Allegheny County Transit Routes and Bus Stop Locations
Figure 5	Three Rivers Heritage Trail Map
Figure 6	2018 Existing Conditions Peak Hour Traffic Volumes
Figure 7	2018 Existing Conditions Peak Hour Levels of Service
Figure 8	Trip Arrival/Departure Distribution
Figure 9	Peak Hour Site Generated Vehicular Trips – Background Developments
Figure 10	Peak Hour Site Generated Vehicular Trips – PTC Master Plan Developments
Figure 11	Opening Year 2021 No-Build (Base) Conditions Peak Hour Traffic Volumes
Figure 12	Opening Year 2021 No-Build (Base) Conditions Peak Hour Levels of Service
Figure 13	Opening Year 2021 Build (with PTC Master Plan Developments) Peak Hour Traffic
	Volumes
Figure 14	Opening Year 2021 Build (with PTC Master Plan Developments) Peak Hour Levels of
	Service
Figure 15	Design Year 2031 No-Build (Base) Conditions Peak Hour Traffic Volumes
Figure 16	Design Year 2031 No-Build (Base) Conditions Peak Hour Levels of Service
Figure 17	Design Year 2031 Build (with PTC Master Plan Developments) Peak Hour Traffic

Design Year 2031 Build (with PTC Master Plan Developments) Peak Hour Levels of

Volumes

Service

Figure 18

1.0 INTRODUCTION AND EXECUTIVE SUMMARY

1.1 Purpose of Report and Study Objectives

This report provides the results of the transportation impact study prepared for the proposed Pittsburgh Technology Center (PTC) Garage 3 development, the composition and location of which are detailed below. The study, as documented in this report, was performed in order to meet the study requirements of the City of Pittsburgh Department of Mobility and Infrastructure (DOMI) as detailed in their <u>Transportation Impact Review Guidelines</u>, 2018 publication.

The study objectives were to identify the potential transportation impacts of the proposed PTC Garage 3 development, and if necessary, develop appropriate mitigation measures.

1.2 Executive Summary

An overview of the project description, principal findings resulting from the analysis, and recommended mitigation strategies are presented in this summary.

1.2.1 Site Location and Study Area

The site is located on Technology Drive, within the Pittsburgh Technology Center in the South Oakland Neighborhood of the City of Pittsburgh, Allegheny County, Pennsylvania as shown in Figure 1. The proposed street address for this garage is 3000 Technology Drive.

The following intersections were selected for study:

- Second Avenue and Bates Street/Technology Drive (existing signalized);
- Second Avenue and Middle Access Road (existing signalized); and
- Second Avenue and Western Access Road (existing signalized).

A total of three (3) existing intersections were included in the scope of the study. The study intersections with respect to the site are shown in Figure 2.

1.2.2 Development Description

The proposed PTC Garage 3 development is anticipated to consist of a new 600 space parking garage to be open in the year 2021. The proposed 600 space PTC Garage 3 will support current and future developments within the Pittsburgh Technology Center as part of the overall master plan for the PTC. The build condition capacity analyses contained within this report represent potential projected conditions upon full-build out of the PTC site as detailed in the URA August 2019 exhibit (Figure 3).

1.2.3 Land Development Control Status

The site is currently zoned SP-1. No change in zoning status is proposed as part of this project.

1.2.4 Principal Findings

Parking Analysis

The proposed 600 space PTC Garage 3 will support current and future developments within the Pittsburgh Technology Center as part of the overall master plan for the PTC. It should be noted, however, that parking garages alone do not generate parking demand and are therefore not subject to a parking analysis.

According to Section 914.05.D of the <u>City of Pittsburgh Urban Zoning Code</u>, the proposed 600 space parking garage is required to provide bicycle parking at a ratio of one (1) space for every 10 vehicular parking spaces. Therefore, it is anticipated that 60 bicycle parking spaces will be incorporated into the proposed PTC Garage 3 development.

Trip Generation

As previously mentioned, the proposed PTC Garage 3 is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network.

However, in order to evaluate the potential traffic impacts associated with future PTC master plan developments (not yet constructed), vehicular trip generation projections were made based on the PTC master plan exhibit prepared by the Urban Redevelopment Authority (URA) and dated August 2019.

Vehicular trip generation for these future PTC master plan developments were projected based upon data published by the Institute of Transportation Engineers (ITE) in their <u>Trip Generation</u>, Tenth Edition, 2017. It is expected that the future PTC master plan developments are to be comprised of a mix of office space, research space, and light industrial space. In order to provide a conservative analysis, Land Use Code 710, General Office Building, was used to estimate the trip generation the proposed Future 150,000 GSF office building, the 87,000 GSF CMRI expansion, and the Future 160,000 GSF building adjacent to 2000 Technology Drive. Land Use Code 110, General Light Industrial, was used to estimate the trip generation of the proposed 40,000 GSF Pitt Biotech expansion. Further details of the trip generation calculations are presented in Table 3 and Section 4.0 of this report.

Traffic Analysis

As previously mentioned, parking garages do not generate trips. It is the adjacent land uses associated with the parking garage that generate trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network. The build condition capacity analyses contained within this report represent potential projected conditions upon full-build out of the PTC master plan as detailed in the URA August 2019 exhibit (Figure 3). The results of the build conditions

capacity analyses are calculated for information purposes for long range planning of the PTC site.

As stated in the City of Pittsburgh Transportation Impact Study Review Guidelines, 2018: "The TIS shall compare the LOS and delay of the future year conditions without the development to the future year conditions with the development. An impact occurs when the overall intersection LOS degrades and the average delay per vehicle increases more than 10.0 seconds. When an intersection is anticipated to operate at LOS F during the future conditions without development, the 10.0 second allowable increase shall apply."

The results of the capacity calculations performed using the opening year 2021 build conditions (with PTC master plan developments) and design year 2031 build conditions (with PTC master plan developments) revealed the following:

- <u>Second Avenue with Bates Street/Technology Drive</u>: The overall intersection LOS is anticipated to continue to operate at an overall intersection LOS D during the weekday A.M. and the weekday P.M. peak hours. No degradations in LOS are projected for this study intersection.
- Second Avenue with Middle Access Road: The overall intersection LOS is anticipated to continue to operate at a LOS A during the weekday A.M. peak hour. The overall intersection LOS is anticipated to decrease from a LOS A to a LOS B during the weekday P.M. peak hour. Although the LOS is anticipated to decrease during the P.M. peak hour, the overall intersection delay is projected to increase by less than three (3) seconds. This increase in delay is within the acceptable 10-second delay degradation limit established within aforementioned City of Pittsburgh Transportation Impact Review Guidelines.
- <u>Second Avenue with Western Access Road</u>: The overall intersection LOS is anticipated to continue to operate at a LOS A during the weekday A.M. peak hour and LOS B during the weekday P.M. peak hour. No degradations in LOS are projected for this study intersection.

Additionally, based on the results of the analyses, the 95th percentile queue lengths under opening year 2021 build (with PTC master plan developments) and design year 2031 build conditions (with PTC master plan developments) are not expected to have a significant increase over the opening year 2021 no-build (base) and design year 2031 no-build (base) conditions. Any potential increases in queue lengths are projected to be approximately three (3) vehicles or fewer. The reported 95th percentile queue lengths that are projected to queue beyond their storage or block lengths are projected to occur with or without the proposed PTC master plan developments. The potential minor increases in queue length are not expected to have a significant impact on the operations of the study network.

Further details of the traffic analyses are presented in Section 4.0 and Section 5.0 of this report.

1.2.5 Recommendations

This study has been performed in order to determine the transportation impacts of the proposed PTC Garage 3 development. These impacts were evaluated based upon the criteria published in the City of Pittsburgh's *Transportation Impact Review Guidelines*, 2018.

The proposed PTC Garage 3 is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network. The build condition capacity analyses contained within this report represent potential projected conditions upon full-build out of the PTC master plan as detailed in the URA August 2019 exhibit (Figure 3). The results of the build conditions capacity analyses are calculated for information purposes for long range planning of the PTC site.

According to Section 914.05.D of the <u>City of Pittsburgh Urban Zoning Code</u>, the proposed 600 space parking garage is required to provide bicycle parking at a ratio of one (1) space for every 10 vehicular parking spaces. Therefore, it is anticipated that 60 bicycle parking spaces will be incorporated into the proposed PTC Garage 3 development.

Based on the results of the capacity analyses, the proposed development is not expected to have a significant impact on the surrounding roadway network. The study intersections are controlled by actuated traffic signal controllers, which are anticipated to accommodate the future traffic volumes with acceptable levels of service. In order to continue to provide efficient traffic progression through the study intersections, it is expected that optimized traffic signal timings would be implemented as future developments within the PTC or other developments within the study area are completed. No further mitigation measures are necessary in order to accommodate the projected trips generated by the potential future PTC master plan developments.

2.0 PROPOSED DEVELOPMENT

2.1 Summary of Development

A description of the proposed development is presented in this section.

2.1.1 Location

The site is located at on Technology Drive, within the Pittsburgh Technology Center in the South Oakland Neighborhood of the City of Pittsburgh, Allegheny County, Pennsylvania as shown in Figure 1. The proposed street address for this garage is 3000 Technology Drive.

2.1.2 Development Plan

The proposed PTC Garage 3 development is anticipated to consist of a new 600 space parking garage to be constructed in the year 2021. The proposed 600 space PTC Garage 3 will support current and future developments within the Pittsburgh Technology Center as part of the overall master plan for the PTC. The build condition capacity analyses contained within this report represent potential projected conditions upon full-build out of the PTC site as detailed in the URA August 2019 exhibit (Figure 3).

2.2 Land Development Control Status

2.2.1 Existing and Proposed Zoning

The site is currently zoned SP-1. No change in zoning status is proposed as part of this project.

2.2.2 Subdivision

It is CEC's understanding that development of the proposed PTC Garage 3 is to be constructed on a portion of Parcel No. 7 along Technology Drive at Second Avenue. Pursuant to an agreement between the URA and Hitachi Rail STS USA, Inc. (Hitachi), Parcel No. 7 will be subdivided. Hitachi will retain ownership of the currently existing parking garage that is located on Parcel No. 7A and the proposed PTC Garage 3 will be constructed on Parcel No. 7B (to be owned by the URA).

3.0 AREA CONDITIONS

3.1 Study Area

The study area for the site has been determined based upon the area of influence and the area of significant traffic impact. The boundaries of the study area were developed in coordination with representatives from the City of Pittsburgh's Department of Mobility and Infrastructure (DOMI) as well as based on CEC's experience with similar projects within the City of Pittsburgh.

3.1.1 Area of Influence and Significant Traffic Impact

The area of significant traffic impact for the proposed development will be on the streets immediately adjacent to the development along Second Avenue. Therefore, the following intersections were selected for study:

- Second Avenue and Bates Street/Technology Drive (existing signalized);
- Second Avenue and Middle Access Road (existing signalized); and
- Second Avenue and Western Access Road (existing signalized).

A total of three (3) existing intersections were studied. The study intersections associated with the site are presented in Figure 2.

3.2 Study Area Land Use

3.2.1 Existing Land Use

The site of the proposed development currently consists of an approximately 80-space surface parking lot.

3.2.2 Anticipated Future Developments

The Riviera development, which consists of a 155,000 GSF office building, is currently under construction on Parcel 4B of the PTC, which is located along Technology Drive between the existing University of Pittsburgh Biotech building and the Bridgeside II building. This development was originally scheduled to be completed in 2019 but has not yet been completed. Therefore, trip generation estimates for the Riviera development were projected as part of the background developments.

In addition to The Riviera development, The Elmhusrt PTC development to be located along Technology Drive between the Western Access Road and the Middle Access Road is anticipated to be constructed and fully occupied by year 2021. This development is projected to consist of two (2) separate buildings providing a total of 111,792 GSF of office space and 60,196 GSF of light industrial space with an on-street parking supply of approximately 108 spaces.

These developments are expected to be open and fully occupied by year 2021.

3.2.3 Existing Zoning and Anticipated Changes

See Section 2.2.

3.2.4 Existing Travel Mode Splits

The location of the site provides numerous opportunities for multi-modal travel including public transit, bicycles, and pedestrians.

Access to public transit is provided by the Port Authority of Allegheny County (PAAC). PAAC Bus Routes 56, 57, and 58 travel along Second Avenue, adjacent to the PTC, with bus stops located at each signalized study intersection. These routes provide regional connections to the greater Pittsburgh area including the City of Pittsburgh Central Business District and the Oakland section of the City of Pittsburgh. It should also be noted that both the University of Pittsburgh and Carnegie Mellon University provide shuttles from their Oakland campuses to the Pittsburgh Technology Center.

The Three Rivers Heritage Trail, a multi-use rail trail, runs parallel to Second Avenue to the north. A sidewalk connection is provided between the trail and the traffic signal at the intersection of Second Avenue with Middle Access Road. Internal multi-use trails are also provided within the Pittsburgh Technology Center that connect to the trail system. The trail system also crosses the Monongahela River along the Hot Metal Bridge.

Multiple studies documenting multi-modal commuter travel behavior within the City of Pittsburgh are available. According to the 2015 City of Pittsburgh *Make My Trip Count Survey*, commuter trips within the Oakland section of the City were comprised of 61% automobile, 26.1% transit, 7.2% walk, and 5.7% bicycle trips. The Make My Trip Count survey was later updated in 2018. According to this updated study, the PTC site was included within the South Side neighborhood of the City. Within this study area, commuter trips were comprised of 80% automobile and 20% alternative mode of travel. Finally, according to PGHSNAP data, 2011, the PTC site is included within the South Oakland section of the City. Within this study area, commuter trips are comprised of 55.8% automobile, 14% transit, 0% bicycle, and 30.2% walk. In order to provide a conservative analysis, all commuter travel modes documented in these surveys were aggregated to develop an estimated multi-modal split for the PTC site. Therefore, for analysis purposes, it was assumed that for developments within the PTC site, commuter trips would be comprised of 80% automobile, 15% transit, and 5% bicycle. No pedestrian modal split was assumed for analysis purposes due to the low number of pedestrians documented in the data collection efforts performed for the study intersections.

3.3 Site Accessibility

3.3.1 Public and Private Roadway Systems

The existing roadway system, including traffic control devices, is documented in this section.

3.3.1.1 Existing Area Roadway System

The existing area roadway system is presented in Figure 1. Details at each of the existing study intersections are presented below:

Second Avenue

Within the study area, Second Avenue is a principal arterial roadway providing a 58-foot wide cartway with concrete curbs. Sidewalks are provided on both the northern and southern sides of Second Avenue. The posted speed limit of Second Avenue is 35 miles per hour.

At its intersection with Bates Street/Technology Drive, Second Avenue provides a three (3) lane approach to Bates Street/Technology Drive for eastbound traffic (an exclusive left turn lane, an exclusive through lane, and a shared through/right turn lane) and a three (3) lane approach to Bates Street/Technology Drive for westbound traffic (an exclusive left turn lane, an exclusive through lane, and a shared through/right turn lane). The intersection of Second Avenue with Bates Street/Technology Drive is controlled by a fully-actuated traffic signal.

At its intersection with Middle Access Road, Second Avenue provides a two (2) lane approach to Middle Access Road for eastbound traffic (an exclusive through lane, and a shared through/right turn lane) and a three (3) lane approach to Middle Access Road for westbound traffic (an exclusive left turn lane and two (2) exclusive through lanes). The intersection of Second Avenue with Middle Access Road is controlled by a fully- actuated traffic signal.

At its intersection with Western Access Road, Second Avenue provides a two (2) lane approach to Western Access Road for eastbound traffic (an exclusive through lane, and a shared through/right turn lane) and a three (3) lane approach to Western Access Road for westbound traffic (an exclusive left turn lane and two (2) exclusive through lanes). The intersection of Second Avenue with Western Access Road is controlled by a fully- actuated traffic signal.

Technology Drive

Within the study area, Technology drive provides a 33-foot wide cartway with concrete curbs and sidewalks

on both the northern and southern sides. On-street metered parking is provided on the southern side of Technology Drive between Western Access Road and Technology Drive (approaching Bates Street intersection). West of the Western Access Road, Technology Drive is a private URA owned roadway. No on-street parking is provided along this section of Technology Drive. The posted speed limit of Second Avenue is 35 miles per hour.

At its intersection with Second Avenue, Technology Drive provides a 56-foot wide cartway with an eight-foot (8) wide concrete median and concrete curbs. A sidewalk is provided on the western side of Technology Drive. Technology Drive provides a two (2) lane approach to Second Avenue for northbound traffic (a shared left turn/through lane and an exclusive right turn lane). The posted speed limit of Technology Drive is 25 miles per hour.

Bates Street

At its intersection with Second Avenue, Bates Street is a principal arterial roadway providing a 59-foot wide cartway with concrete curbs. A sidewalk is provided on the western side of Bates Street. At its intersection with Second Avenue, Bates Street provides a three (3) lane approach to Second Avenue for southbound traffic (an exclusive left turn lane, a shared left turn/through lane, and an exclusive right turn lane). The posted speed limit of Bates Street is 25 miles per hour.

Middle Access Road

At its intersection with Second Avenue, Middle Access Road provides a 38-foot wide cartway with a 10-foot wide concrete median and concrete curbs. Sidewalks are provided on both the eastern and western sides of Middle Access Road. At its intersection with Second Avenue, Middle Access Road provides a one (1) lane approach to Second Avenue for northbound traffic (a shared left turn/right turn lane). The speed limit of Middle Access Road is not posted.

Western Access Road

At its intersection with Second Avenue, Western Access Road provides a 62-foot wide cartway with 14-foot wide concrete median and concrete curbs. A sidewalk is provided on both the eastern and western sides of Western Access Road. At its intersection with Second Avenue, Western Access Road provides a two (2) lane approach to Second Avenue for northbound traffic (an exclusive left turn lane and an exclusive right turn lane). The speed limit of Western Access Road is not posted.

3.3.1.2 Future Area Roadway Systems

No major changes in the study area corridors are currently approved. No changes in the City roadway system, traffic flow directions or intersection traffic controls have been assumed on public roadways.

3.3.1.3 Existing Transit Routes and Service

Access to public transit is provided by the Port Authority of Allegheny County (PAAC). PAAC Bus Routes 56, 57, and 58 travel along Second Avenue, adjacent to the PTC, with bus stops located at each signalized study intersection. These routes provide regional connections to the greater Pittsburgh area including the City of Pittsburgh Central Business District and the Oakland section of the City of Pittsburgh. It should also be noted that both the University of Pittsburgh and Carnegie Mellon University provide shuttles from their Oakland campuses to the Pittsburgh Technology Center.

A map of the PAAC bus routes and bus stop locations are presented Figure 4.

3.3.1.4 Existing Multi-Use Trail System

The Three Rivers Heritage Trail, a multi-use rail trail, runs parallel to Second Avenue to the north. This trail system consists of a 34-mile nonlinear system with segments on both banks of the three rivers. A connection to the trail is provided at the intersection of Second Avenue with Middle Access Road. Additionally, internal multi-use trails within the PTC connect with the trail system at the Hot Metal Street Bridge section.

A map of the existing trail system is presented Figure 5.

3.3.2 Existing Traffic Volumes

Documentation of existing vehicular, pedestrian and bicycle volumes and conditions in the study area are documented in this section.

3.3.2.1 Data Collection

As a result of measures put in place to prevent the spread of COVID-19 including stay at home orders, canceling of events and public gatherings, business closures, university and school closures, increased telecommuting, and increased jobless numbers, traffic volumes throughout the area are significantly lower than during typical conditions. Therefore, in order to project transportation impacts for new developments, it is necessary to utilize historic traffic count data. As agreed upon with representatives of the City of Pittsburgh DOMI, historic traffic counts previously collected for the subject study intersections can be utilized to prepare transportation impact analyses. CEC previously performed turning movement counts including pedestrian and bicycles count data for the study intersections in November 2018. These counts were performed during the following peak periods:

- Weekday AM peak period 7:00 AM to 9:00 AM
- Weekday PM peak period 4:00 PM to 6:00 PM

It should be noted that these traffic counts were performed after the opening of the Hotel Indigo and therefore should be considered as an accurate representation of traffic conditions within the study area.

Additional data collection efforts included the following items:

- Field reconnaissance of the study area and intersections, including roadway geometry, crosswalk locations, bicycle facilities, public transit stops, and existing traffic control; and
- Acquisition of intersection signal permit drawings and signal phasing and timing information from the City of Pittsburgh Department of Public Works.

3.3.2.2 Automatic Traffic Recorder Counts

No automatic traffic recorder counts (ATR) were conducted during this study.

3.3.2.3 *Peak Hours*

Manual turning movement counts of automobiles, bicycles, and pedestrians were performed by CEC at the study intersections from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on Wednesday, November 13, 2018.

The overall peak hours determined from these counts are as follows:

- AM Peak Hour 7:30 AM to 8:30 AM
- PM Peak Hour 4:00 PM to 5:00 PM

3.3.2.4 Peak Hour Traffic Volumes

The 2018 existing peak hour traffic volumes are presented in Figure 6. Summaries of the data collected including peak hour bicycle and pedestrian volumes are included in Appendix A to this report.

3.3.2.5 2018 Existing Conditions – Intersection Levels of Service

Capacity calculations for the study intersection were performed using Synchro, Version 10, Traffic Signal Timing and Analysis Software. Level of Service (LOS) grades were assigned to the intersections based on the methodologies published by the Transportation Research Board in their <u>Highway Capacity Manual</u>, <u>Sixth Edition</u>, 2017. This methodology determines how well an intersection, approach to an intersection,

or movement at an intersection operates, and assigns to it a LOS A through F, with LOS A representing the best operating conditions and LOS F, the worst. Detailed definitions of LOS have been included in Appendix B to this report.

The results of the capacity analyses are summarized in Figure 7, as well as in Tables 1 and 2 for the A.M. and P.M. peak hours, respectively. Based on the results of the capacity analyses performed, the overall intersection levels of service currently operate at LOS C or better for each study intersection.

Detailed capacity and levels of service printouts for 2018 existing conditions are provided in Appendix C to this report.

4.0	PROJECTED TRAFFIC VOLUMES AND INTERSECTION CAPACITY ANALYSIS
7.0	TROGECTED TRANSPIC VOLUMES AND INVERSECTION CANACITY AUXILIANS

4.1 Site Generated Traffic –Background Developments

4.1.1 Vehicular Trip Generation

The Riviera development, which consists of a 155,000 GSF office building, is currently under construction on Parcel 4B of the PTC, which is located along Technology Drive between the existing University of Pittsburgh Biotech building and the Bridgeside II building. This development was originally scheduled to be completed in 2019 but has not yet been completed. Therefore, trip generation estimates for the Riviera development were projected as part of the background developments.

Vehicular trip generation for The Riviera development was projected based upon data published by the Institute of Transportation Engineers (ITE) in their Trip Generation, Tenth Edition, 2017. Land Use Code 710, General Office Building, was used to estimate the trip generation of the proposed development. As previously mentioned, the Rivera development is expected to generate multi-modal trips. Based on commuter survey data detailed in Section 3.2.4 of this report, it was determined that a modal split of 80% vehicular trips, 15% transit, and 5% bicycle would provide a conservative approximation for the site location. This multi-modal split is also consistent with other recent studies prepared for developments within the PTC.

Using this methodology, the 155,000 GSF The Riviera development can be anticipated to generate a total of 172 new trips during the weekday A.M. peak hour (148 trips entering/24 trips exiting). Of these trips, a total of 138 new trips are projected to be made by automobile (119 trips entering/19 trips exiting). During the P.M. peak hour, The Riviera development can be anticipated to generate a total of 173 new trips (28 trips entering/145 trips exiting). Of these trips, a total of 139 new trips are projected to be made by automobile (23 trips entering/116 trips exiting).

In addition to The Riviera development, The Elmhusrt PTC development to be located along Technology Drive between the Western Access Road and the Middle Access Road is anticipated to be constructed and fully occupied by year 2021. This development is projected to consist of two (2) separate buildings providing a total of 111,792 GSF of office space and 60,196 GSF of light industrial space with an on-street parking supply of approximately 108 spaces.

Vehicular trip generation for the Elmhurst PTC development was obtained from the Transportation Impact Study prepared in April, 2019 for Desmone Architects. As stated in the study, the Elmhurst PTC development is also anticipated to generate multi-modal trips at a ratio of 80% vehicular trips, 15% transit, and 5% bicycle. According to this study, the proposed Elmhurst PTC development is anticipated to generate a total of 214 new trips during the weekday A.M. peak hour (188 trips entering/26 trips exiting). Of these trips, a total of 178 new trips are projected to be made by automobile (156 trips entering/22 trips

exiting). During the P.M. peak hour, The Elmhurst PTC development can be anticipated to generate a total of 214 new trips (37 trips entering/177 trips exiting). Of these trips, a total of 176 new trips are projected to be made by automobile (30 trips entering/146 trips exiting).

Detailed trip generation calculations are summarized in Table 3.

Copies of the trip generation calculations are included in Appendix D to this report.

4.1.2 Vehicular Trip Arrival and Departure Distributions – Background Developments

Vehicular arrival/departure distributions developed for the background developments, The Riviera development and the Elmhurst PTC development, were based on existing peak hour traffic volume distributions observed along Second Avenue. The resultant arrival/departure distributions for primary trips generated by the background developments are presented in Figure 8.

4.1.3 Vehicular Trip Assignment – Determination of Site Generated Traffic

The forecasted trips to be generated by the background developments were distributed onto the study roadways and through the study intersections based on the trip arrival/departure distribution presented in Figure 8. The resultant background development site generated trips are shown in Figure 9.

4.2 Site Generated Traffic –PTC Master Plan Developments

4.2.1 Vehicular Trip Generation

The proposed PTC Garage 3 development is anticipated to consist of a new 600 space parking garage to be open in the year 2021. It should be noted, however, that parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network.

However, in order to evaluate the potential traffic impacts associated with future PTC master plan developments (not yet constructed), vehicular trip generation projections were made based on the PTC master plan exhibit prepared by the Urban Redevelopment Authority (URA) and dated August 2019. According to this exhibit, the following future land uses are anticipated for the full-build out of the PTC:

- Pitt Biotech expansion 40,000 GSF
- Future Office Building (southeast corner of Second Avenue and Middle Access Road) 150,000
 GSF

- CMRI Expansion 87,000 GSF
- Future Building (adjacent to 2000 Technology Drive) 160,000 GSF

Vehicular trip generation for these future PTC master plan developments was projected based upon data published by the Institute of Transportation Engineers (ITE) in their Trip Generation, Tenth Edition, 2017. It is expected that the future PTC master plan developments are to be comprised of a mix of office space, research space, and light industrial space. In order to provide a conservative analysis, Land Use Code 710, General Office Building, was used to estimate the trip generation the proposed Future 150,000 GSF office building, the 87,000 GSF CMRI expansion, and the Future 160,000 GSF building adjacent to 2000 Technology Drive. Land Use Code 110, General Light Industrial, was used to estimate the trip generation of the proposed 40,000 GSF Pitt Biotech expansion.

Based on commuter survey data detailed in Section 3.2.4 of this report, it was determined that a modal split of 80% vehicular trips, 15% transit, and 5% bicycle would provide a conservative approximation for the site location. This multi-modal split is also consistent with other recent studies prepared for developments within the PTC.

Using this methodology and land use assumptions, the future PTC master plan developments are conservatively estimated to generate a total of 475 new trips during the weekday A.M. peak hour (409 trips entering/66 trips exiting). Of these trips, a total of 380 new trips are projected to be made by automobile (326 trips entering/54 trips exiting). During the P.M. peak hour, the future PTC master plan developments are conservatively estimated to generate a total of 465 new trips (73 trips entering/392 trips exiting). Of these trips, a total of 373 new trips are projected to be made by automobile (60 trips entering/313 trips exiting).

4.2.2 Bicycle Trip Generation

Site generated bicycle trips were projected as described in Section 3.2.4 and 4.2. Based on the existing bicycle volumes, it was assumed that all new site generated bicycle traffic would utilize the existing internal and external trail system and would not travel on Second Avenue within the study area.

Detailed trip generation calculations are summarized in Table 4.

4.2.3 Pedestrian Trip Generation

As detailed in section 3.2.4, No pedestrian modal split was assumed for analysis purposes due to the low number of pedestrians documented in the data collection efforts performed for the study intersections. Any new pedestrian trips, exclusive of persons walking to/from bus stops, are assumed to utilize the existing internal and external sidewalk connections or the adjacent multi-use trail systems. These pedestrian

connections lead to adjacent developments as well as the South Side neighborhood of the City via the Hot Metal Street Bridge without requiring travel through the Second Avenue study intersections.

4.2.4 Vehicular Trip Arrival and Departure Distributions – PTC Master Plan Developments

Vehicular arrival/departure distributions developed for the future PTC Master Plan developments (Figure 3) were based on existing peak hour traffic volume distributions observed during the turning movement counts performed for the study intersections along Second Avenue. As a result, the resultant arrival/departure distributions for primary trips generated by the future PTC Master Plan developments matches the distributions developed for the background developments. The trip arrival/departure distributions are presented in Figure 8.

4.2.5 Vehicular Trip Assignment – Determination of Site Generated Traffic

The forecasted trips to be generated by the future PTC master plan developments were distributed onto the study roadways and through the study intersections based on the trip arrival/departure distribution presented in Figure 8. The resultant PTC master plan developments site generated trips are shown in Figure 10.

4.2 Background Traffic (Base Traffic)

4.2.1 Background Traffic Growth

The proposed 600 space PTC Garage 3 is anticipated to be constructed in the year 2021. In order to project opening year 2021 and design year 2031 traffic volumes, an annual traffic growth factor was determined and applied to all of the existing traffic volume data. According to the Southwestern Pennsylvania Commission (SPC) Cycle 10 projections, traffic in this section of the City of Pittsburgh has a linear growth rate of 0.5 percent annually.

This background traffic growth rate does not include trip projections for the background developments including The Riviera and the Elmhurst PTC development, for which site generated trips were developed as described in Section 4.1 of this report.

4.2.2 2021 Opening Year No-Build (Base) Conditions Traffic Volumes (Without Development)

Forecasted 2021 opening year no-build (base) conditions traffic volumes for each of the peak periods analyzed were determined by applying the aforementioned background growth rate of 0.5% per year, linear to the existing 2018 traffic volumes (Figure 6). The forecasted trips to be generated by the background developments (The Riviera and the Elmhurst PTC development) presented in Figure 9 were then added to these volumes. The resultant forecasted opening year 2021 no-build (base) conditions traffic volumes are presented in Figure 11.

4.2.3 2021 Opening Year No-Build Base Conditions - Intersection Levels of Service

Using the analysis methodologies described in Section 3.3.2.5, intersection levels of service were determined at all of the study intersections under opening year 2021 no-build (base) conditions. The results of the capacity analyses are summarized in Table 1 for the weekday A.M. peak hour and in Table 2 for the weekday P.M. peak hour. Results of the opening year 2021 no-build (base) conditions are also presented graphically in Figure 12.

The results of the capacity calculations performed using forecasted opening year 2021 no-build (base) condition traffic volumes revealed that each of the study intersections can be anticipated to operate at an overall intersection Level of Service D or better during the weekday A.M. and weekday P.M. peak hours.

Detailed capacity and levels of service printouts are provided in Appendix E to this report.

4.3 Build Traffic Volumes (With Development)

4.3.1 Opening Year 2021 Build Conditions Traffic Volumes (With PTC Master Plan Developments)

As described in Section 4.2.1, the proposed PTC Garage 3 development is anticipated to consist of a new 600 space parking garage. This garage is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network.

However, in order to evaluate the potential traffic impacts associated with future PTC master plan developments (not yet constructed), vehicular trip generation projections were made based on the PTC master plan exhibit prepared by the Urban Redevelopment Authority (URA) and dated August 2019.

The forecasted opening year 2021 build traffic volumes (with future PTC master plan developments) for the A.M. and P.M. peak hours were determined by adding the forecasted trips to be generated by future PTC master plan developments (Figure 10) to the opening year 2021 no-build (base) traffic volumes (Figure 11). The resultant forecasted opening year 2021 build traffic volumes (with future PTC master plan developments) are presented in Figure 13.

4.3.2 Opening Year 2021 Build Conditions (With PTC Master Plan Developments) - Intersections Levels of Service

Using the methodologies described in Section 3.3.2.5, intersection levels of service were determined at all of the study intersections under opening year 2021 build conditions (with PTC master plan developments).

As previously stated, the proposed PTC Garage 3 is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network. The build condition capacity analyses contained within this report represent potential projected conditions upon full-build out of the PTC site as detailed in the URA August 2019 exhibit (Figure 3). The results of the build conditions capacity analyses are therefore, for information purposes for long range planning of the PTC site.

As stated in the City of Pittsburgh <u>Transportation Impact Study Review Guidelines</u>, 2018: "The TIS shall compare the LOS and delay of the future year conditions without the development to the future year conditions with the development. An impact occurs when the overall intersection LOS degrades and the average delay per vehicle increases more than 10.0 seconds. When an intersection is anticipated to operate at LOS F during the future conditions without development, the 10.0 second allowable increase shall apply."

The results of the capacity calculations performed using the opening year 2021 build conditions (with PTC master plan developments) are summarized in Figure 14 for the weekday A.M. and weekday P.M. peak hours, as well as in Tables 1 and 2, respectively. The results of the capacity calculations performed revealed the following:

- <u>Second Avenue with Bates Street/Technology Drive</u>: The overall intersection LOS is anticipated to continue to operate at an overall intersection LOS D during the weekday A.M. and the weekday P.M. peak hours. No degradations in LOS are projected for this study intersection.
- Second Avenue with Middle Access Road: The overall intersection LOS is anticipated to continue to operate at a LOS A during the weekday A.M. peak hour. The overall intersection LOS is anticipated to decrease from a LOS A to a LOS B during the weekday P.M. peak hour. Although the LOS is anticipated to decrease during the P.M. peak hour, the overall intersection delay is projected to increase by only 2.6 seconds. This increase in delay is within the acceptable 10-second delay degradation limit established within aforementioned City of Pittsburgh Transportation Impact Review Guidelines.
- <u>Second Avenue with Western Access Road</u>: The overall intersection LOS is anticipated to continue to operate at a LOS A during the weekday A.M. peak hour and LOS B during the weekday P.M. peak hour. No degradations in LOS are projected for this study intersection.

Detailed capacity and levels of service printouts are provided in Appendix F to this report.

4.3.3 Design Year 2031 No-Build (Base) Conditions Traffic Volumes (Without Development)

As previously mentioned, the proposed PTC Garage 3 is anticipated to be constructed in 2021 ("opening year"). Therefore, traffic volumes were also projected for the study intersections for design year 2031 conditions, ten (10) years beyond the anticipated opening year, in order to provide a conservative analysis for impacts related to future PTC master plan developments. This 10 year projection is consistent with the City of Pittsburgh Department of Mobility and Infrastructure <u>Transportation Impact Review Guidelines</u>, 2018 for master plan developments.

Forecasted design year 2031 no-build (base) conditions traffic volumes for each of the peak periods analyzed were determined by applying the aforementioned background growth rate of 0.5% per year, linear to the existing 2018 traffic volumes (Figure 6). The forecasted trips to be generated by the background developments (The Riviera and the Elmhurst PTC development) presented in Figure 9 were then added to these volumes. The resultant forecasted design year 2031 no-build (base) conditions traffic volumes are presented in Figure 15.

4.3.4 Design Year 2031 No-Build (Base) Conditions – Intersections Levels of Service

Using the analysis methodologies described in Section 3.3.2.5, intersection levels of service were determined at all of the study intersections under design year 2031 no-build (base) conditions. The results of the capacity calculations performed using design year 2031 no-build (base) conditions weekday A.M. and P.M. peak hour volumes are summarized in Table 1 and Table 2, respectively. Results of the design year 2031 no-build (base) conditions are also presented graphically in Figure 16.

The results of the capacity calculations performed using forecasted design year 2031 no-build (base) condition traffic volumes revealed that each of the study intersections can be anticipated to operate at an overall intersection Level of Service D or better during the weekday A.M. and weekday P.M. peak hours.

Detailed capacity and levels of service printouts are provided in Appendix G to this report.

4.3.5 Design Year 2031 Build Conditions Traffic Volumes (With PTC Master Plan Developments)

As described in Section 4.2.1, the proposed PTC Garage 3 development is anticipated to consist of a new 600 space parking garage. This garage is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network.

However, in order to evaluate the potential traffic impacts associated with future PTC master plan developments (not yet constructed), vehicular trip generation projections were made based on the PTC master plan exhibit prepared by the Urban Redevelopment Authority (URA) and dated August 2019.

The forecasted opening year 2021 build traffic volumes (with future PTC master plan developments) for the weekday A.M. and weekday P.M. peak hours were determined by adding the forecasted trips to be generated by future PTC master plan developments (Figure 10) to the design year 2031 no-build (base) traffic volumes (Figure 15). The resultant forecasted opening year 2021 build traffic volumes (with future PTC master plan developments) are presented in Figure 17.

4.3.6 Design Year 2031 Build Conditions (With PTC Master Plan Developments) – Intersections Levels of Service

Using the methodologies described in Section 3.3.2.5, intersection levels of service were determined at all of the study intersections under design year 2031 build conditions (with PTC master plan developments).

As previously stated, the proposed PTC Garage 3 is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network. The build condition capacity analyses contained within this report represent potential projected conditions upon full-build out of the PTC site as detailed in the URA August 2019 exhibit (Figure 2). The results of the build conditions capacity analyses are therefore, for information purposes for long range planning of the PTC site.

As stated in the City of Pittsburgh <u>Transportation Impact Study Review Guidelines</u>, 2018: "The TIS shall compare the LOS and delay of the future year conditions without the development to the future year conditions with the development. An impact occurs when the overall intersection LOS degrades and the average delay per vehicle increases more than 10.0 seconds. When an intersection is anticipated to operate at LOS F during the future conditions without development, the 10.0 second allowable increase shall apply."

The results of the capacity calculations performed using the design year 2031 build conditions (with PTC master plan developments) are summarized in Figure 18 for the A.M. and P.M. peak hours, as well as in Tables 1 and 2, respectively. The results of the capacity calculations performed revealed the following:

- <u>Second Avenue with Bates Street/Technology Drive</u>: The overall intersection LOS is anticipated to continue to operate at an overall intersection LOS D during the weekday A.M. and the weekday P.M. peak hours. No degradations in LOS are projected for this study intersection.
- <u>Second Avenue with Middle Access Road</u>: The overall intersection LOS is anticipated to continue to operate at a LOS A during the weekday A.M. peak hour. The overall intersection LOS is anticipated to decrease from a LOS A to a LOS B during the weekday P.M. peak hour. Although the LOS is anticipated to decrease during the P.M. peak hour, the overall intersection delay is projected to increase by only 2.7 seconds. This increase in delay is within the acceptable 10-second delay degradation limit established within aforementioned City of Pittsburgh Transportation Impact Review Guidelines.
- <u>Second Avenue with Western Access Road</u>: The overall intersection LOS is anticipated to continue to operate at a LOS A during the weekday A.M. peak hour and LOS B during the weekday P.M. peak hour. No degradations in LOS are projected for this study intersection.

Detailed capacity and levels of service printouts are provided in Appendix H to this report.

5.0 SUPPLEMENTARY ANALYSES

5.1 Parking Analysis

The proposed 600 space PTC Garage 3 is being developed to support current and future developments within the Pittsburgh Technology Center as part of the overall master plan for the PTC. It should be noted, however, that parking garages alone do not generate parking demand and therefore are not subject to a parking analysis.

According to Section 914.05.D of the City of Pittsburgh Urban Zoning Code, the proposed 600 space parking garage is required to provide bicycle parking at a ratio of 1 space for every 10 vehicular parking spaces. Therefore, it is anticipated that 60 bicycle parking spaces will be incorporated into the proposed PTC Garage 3 development.

5.2 Loading Analysis

Not applicable. Loading spaces are not required for a parking garage.

5.3 Queuing Analysis

As stated in the City of Pittsburgh Transportation Impact Study Review Guidelines, 2018: "When all of the study intersections within the study area operate at LOS D or better, the queuing from Synchro may be reported." Based on the results of the capacity analyses performed, all study intersections are anticipated to operate at an overall intersection LOS D or better during both the A.M. and P.M. peak hours. Furthermore, all movements are projected to operate with volume to capacity ratios less than 1.0. Therefore, as instructed by the City of Pittsburgh guidelines, the 95th percentile queue lengths calculated using Synchro Traffic Signal Coordination Software, Version 10 were reported.

Based on the results of these analyses, the 95th percentile queue lengths under opening year 2021 build (with PTC master plan developments) and design year 2031 build conditions (with PTC master plan developments) are not expected to have a significant increase over the opening year 2021 no-build (base) and design year 2031 no-build (base) conditions. Any potential increases in queue lengths are projected to be approximately three (3) vehicles or fewer.

It should be noted that at the intersection of Second Avenue with Bates Street/Technology Drive, the southbound Bates Street movements are anticipated to queue back past its intersection with the ramp leading to I-376 eastbound due to the short block length between these intersections. This 95th percentile queue length is anticipated to occur under existing conditions and well as all future no-build and build (with PTC master plan developments) conditions during the weekday A.M. and weekday P.M. peak hours.

It should also be noted that at the intersection of Second Avenue with Bates Street/Technology Drive, the

westbound Second Avenue through movement 95th percentile queue lengths are projected to queue back past its intersection with Hot Metal Street. This queue length is also anticipated to occur under existing conditions and projected no-build and build (with PTC master plan developments) conditions analyses during the weekday A.M. peak hour.

These calculated queueing conditions are expected to occur with or without the proposed PTC master plan developments. The potential minor increases in queue length are not expected to have a significant impact on the operations of the study network; therefore, no mitigations are recommended.

The 95th percentile queue lengths during the weekday A.M. peak hour and weekday P.M. peak hour are summarized in Tables 4 and 5, respectively.

Detailed Synchro queueing reports are included with the capacity calculations provided in the Appendix to this report.

5.4 Traffic Signal Warrants

Actuated traffic signal controls currently exists at all study intersections. Therefore, no signal warrant analyses were performed.

5.5 Auxiliary Turn Lane Warrants

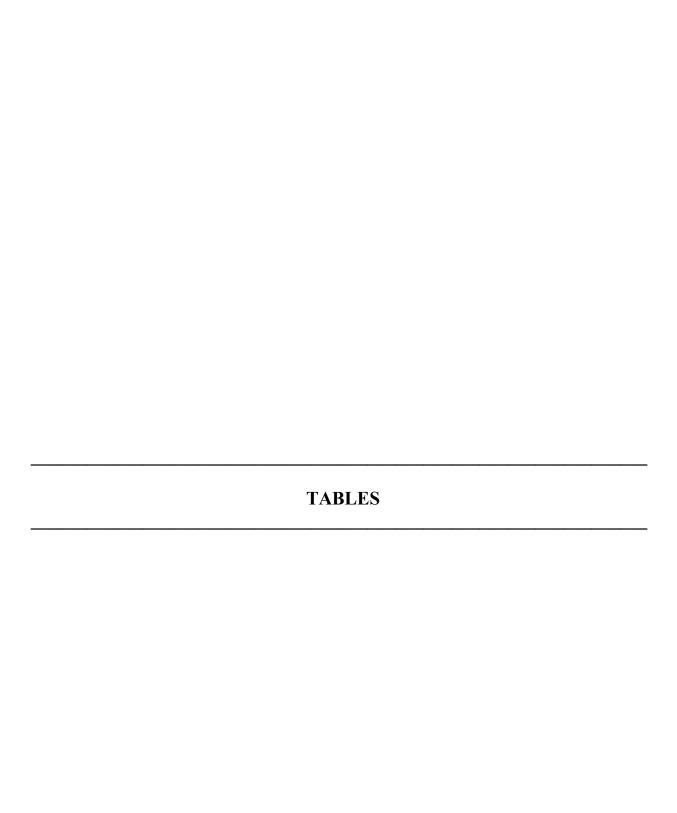
Auxiliary left turn lanes are currently provided into the PTC site at all study intersections. Therefore, no auxiliary turn lane warrant analyses were performed.

5.6 Transportation Demand Management Plan

As previously stated, the proposed PTC Garage 3 is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network and would not require a transportation demand management plan. However, it is expected that as future developments occur within the study area including future PTC master plan developments, transportation demand management strategies would be investigated at that time.

.

6.0 CONCLUSIONS AND RECOMMENDATIONS


6.1 Conclusions and Recommendations

This study has been performed in order to determine the transportation impacts of the proposed PTC Garage 3 development. These impacts were evaluated based upon the criteria published in the City of Pittsburgh's *Transportation Impact Review Guidelines*, 2018.

The proposed PTC Garage 3 is being developed in order to support current and future developments within the PTC as part of the overall master plan for the site. However, parking garages themselves do not generate trips. It is the adjacent land uses associated with the parking garage that generate the trips. Therefore, the proposed PTC Garage 3 parking garage would not, by itself, generate traffic impacts on the surrounding roadway network. The build condition capacity analyses contained within this report represent potential projected conditions upon full-build out of the PTC master plan as detailed in the URA August 2019 exhibit (Figure 3). The results of the build conditions capacity analyses are calculated for information purposes for long range planning of the PTC site.

According to Section 914.05.D of the <u>City of Pittsburgh Urban Zoning Code</u>, the proposed 600 space parking garage is required to provide bicycle parking at a ratio of one (1) space for every 10 vehicular parking spaces. Therefore, it is anticipated that 60 bicycle parking spaces will be incorporated into the proposed PTC Garage 3 development.

Based on the results of the capacity analyses, the proposed development is not expected to have a significant impact on the surrounding roadway network. The study intersections are controlled by actuated traffic signal controllers, which are anticipated to accommodate the future traffic volumes with acceptable levels of service. In order to continue to provide efficient traffic progression through the study intersections, it is expected that optimized traffic signal timings would be implemented as future developments within the PTC or other developments within the study area are completed. No further mitigation measures are necessary in order to accommodate the projected trips generated by the potential future PTC master plan developments.

TABLE 1 CAPACITY ANALYSIS SUMMARY

Pittsburgh Technology Center (PTC) Garage 3 Transportation Impact Study City of Pittsburgh, Allegheny County, Pennsylvania

		Level of Service (Delay) (1)				
Annuage / Mayromant/	Movement	A.M. Peak Hour				
Approach/ Movement/ Intersection		2018 Existing	2021 No-Build (Base)	2021 Build (with PTC Master Plan Developments)	2031 No-Build (Base)	2031 Build (with PTC Master Plan Developments)
Second Avenue and Ba	tes Street/Technology Driv	/e				
	Left Turn	E (61.9)	E (69.2)	E (77.8)	E (69.4)	E (76.5)
Eastbound	Through	B (12.9)	B (16.7)	B (18.2)	B (16.9)	B (18.5)
Second Avenue	Right Turn	B (12.9)	B (16.7)	B (18.2)	B (16.9)	B (18.5)
	Approach	C (30.6)	D (35.6)	D (39.6)	D (35.8)	D (39.4)
	Left Turn	D (54.2)	E (59.5)	E (61.1)	E (60.4)	E (61.4)
Westbound	Through	C (27.9)	C (33.6)	D (38.8)	D (37.4)	D (45.5)
Second Avenue	Right Turn	C (30.8)	D (35.4)	D (42.2)	D (40.4)	D (52.0)
	Approach	C (30.0)	D (36.7)	D (42.4)	D (40.6)	D (49.8)
	Left Turn	D (52.4)	D (52.7)	D (54.7)	D (53.5)	D (54.9)
Northbound	Through	A (0.0)	A (0.0)	A (0.0)	A (0.0)	A (0.0)
Technology Drive	Right Turn	D (45.7)	D (42.5)	D (42.7)	D (43.2)	D (42.8)
	Approach	D (50.0)	D (47.6)	D (48.3)	D (48.4)	D (48.4)
	Left Turn	D (46.9)	D (49.7)	D (54.2)	D (52.5)	E (55.4)
Southbound	Through	A (0.0)	A (0.0)	A (0.0)	A (0.0)	A (0.0)
Bates Street	Right Turn	C (31.7)	C (32.8)	D (35.9)	C (32.9)	D (35.3)
	Approach	D (43.4)	D (45.5)	D (48.6)	D (47.6)	D (49.3)
Overall Intersection		C (33.9)	D (39.0)	D (43.8)	D (41.8)	D (47.9)
Second Avenue and Mid	ddle Access Road				•	
Eastbound Second Avenue	Approach	A (6.5)	A (7.7)	A (9.1)	A (7.8)	A (8.9)
147 41 1	Left Turn	C (23.3)	C (21.4)	C (22.4)	C (21.5)	C (23.1)
Westbound Second Avenue	Through	A (2.8)	A (2.8)	A (2.9)	A (2.9)	A (2.9)
Second Avenue	Approach	A (3.5)	A (4.6)	A (5.8)	A (4.6)	A (5.7)
Northbound Middle Access Rd	Approach	D (46.2)	C (27.6)	C (24.9)	C (27.7)	C (25.8)
Overall	Intersection	A (4.7)	A (5.9)	A (7.2)	A (5.9)	A (7.1)

TABLE 1 (continued) CAPACITY ANALYSIS SUMMARY

Pittsburgh Technology Center (PTC) Garage 3 Transportation Impact Study

City of Pittsburgh, Allegheny County, Pennsylvania

		-	Level of Service (Delay) ⁽¹⁾											
Ammanah/ Mayamant/				A.M. Peak Hour										
Approach/ Movement/ Intersection	Movement	2018 Existing	2021 No-Build (Base)	2021 Build (with PTC Master Plan Developments)	2031 No-Build (Base)	2031 Build (with PTC Master Plan Developments)								
Second Avenue and W	estern Access Road													
Eastbound Second Avenue	Approach	A (7.4)	A (7.4)	A (9.7)	A (7.4)	A (9.7)								
Ma ath a cod	Left Turn	C (20.3)	C (23.0)	C (26.6)	C (23.4)	C (27.0)								
Westbound Second Avenue	Through	A (2.8)	A (2.7)	A (2.6)	A (2.7)	A (2.6)								
Second Avenue	Approach	A (4.0)	A (4.1)	A (6.8)	A (4.0)	A (6.7)								
No orthologogous d	Left Turn	C (23.7)	C (24.0)	C (25.9)	C (24.4)	C (26.4)								
Northbound Western Access Rd	Right Turn	C (21.0)	C (20.2)	C (24.4)	C (20.5)	C (24.8)								
Approach		C (22.8)	C (23.5)	C (25.5)	C (23.9)	C (25.9)								
Overall	Intersection	A (5.5)	A (5.9)	A (8.6)	A (5.8)	A (8.5)								

⁽¹⁾ Level of service and vehicular delay calculated using HCM 6th Edition module in Synchro Traffic Signal Coordination Software, Version 10.

TABLE 2 CAPACITY ANALYSIS SUMMARY

Pittsburgh Technology Center (PTC) Garage 3 Transportation Impact Study City of Pittsburgh, Allegheny County, Pennsylvania

			L	evel of Service (Delay)	(1)	
Annroach/ Movement/				P.M. Peak Hour		
Approach/ Movement/ Intersection	Movement	2018 Existing	2021 No-Build (Base)	2021 Build (with PTC Master Plan Developments)	2031 No-Build (Base)	2031 Build (with PTC Master Plan Developments)
Second Avenue and Ba	tes Street/Technology Drive	9				
	Left Turn	D (50.7)	E (55.7)	E (67.1)	E (59.8)	E (70.0)
Eastbound	Through	B (19.3)	C (23.2)	C (26.6)	C (23.6)	C (26.3)
Second Avenue	Right Turn	B (19.2)	C (23.1)	C (26.5)	C (23.4)	C (26.2)
	Approach	C (26.9)	C (31.3)	D (37.0)	C (32.6)	D (37.5)
	Left Turn	D (54.6)	D (53.3)	E (57.8)	E (55.3)	E (58.8)
Westbound	Through	C (31.2)	D (36.2)	D (43.7)	D (37.9)	D (44.5)
Second Avenue	Right Turn	D (42.5)	D (54.6)	E (69.2)	E (60.5)	E (74.1)
Γ	Approach	D (37.7)	D (46.6)	E (57.3)	D (50.5)	E (60.3)
	Left Turn	D (54.0)	E (56.1)	E (60.8)	E (61.5)	E (71.8)
Northbound	Through	A (0.0)	A (0.0)	A (0.0)	A (0.0)	A (0.0)
Technology Drive	Right Turn	D (43.5)	D (44.8)	E (56.5)	D (47.5)	E (65.0)
	Approach	D (50.8)	D (51.1)	E (58.7)	E (55.3)	E (68.4)
	Left Turn	D (40.4)	D (43.0)	D (48.6)	D (45.7)	D (50.5)
Southbound	Through	A (0.0)	A (0.0)	A (0.0)	A (0.0)	A (0.0)
Bates Street	Right Turn	C (22.0)	C (22.3)	C (24.1)	C (22.7)	C (23.9)
	Approach	D (37.8)	D (40.0)	D (44.5)	D (42.4)	D (46.1)
Overall	Intersection	C (33.7)	D (39.0)	D (46.4)	D (41.5)	D (48.9)
Second Avenue and Mic	ddle Access Road		•			
Eastbound Second Avenue	Approach	A (5.7)	A (7.5)	A (9.7)	A (7.6)	A (10.0)
	Left Turn	E (57.2)	D (45.0)	D (46.1)	D (46.1)	D (47.3)
Westbound	Through	A (1.9)	A (2.6)	A (3.4)	A (2.6)	A (3.4)
Second Avenue	Approach	A (3.0)	A (4.6)	A (6.5)	A (4.6)	A (6.5)
Northbound Middle Access Rd	Approach	C (32.6)	D (35.5)	C (33.9)	D (36.4)	C (34.7)
Overall	Intersection	A (5.6)	A (8.6)	B (11.2)	A (8.6)	B (11.3)

TABLE 2 (continued) CAPACITY ANALYSIS SUMMARY

Pittsburgh Technology Center (PTC) Garage 3 Transportation Impact Study

City of Pittsburgh, Allegheny County, Pennsylvania

			L	evel of Service (Delay)	(1)	
A				P.M. Peak Hour		
Approach/ Movement/ Intersection	Movement	2018 Existing	2021 No-Build (Base)	2021 Build (with PTC Master Plan Developments)	2031 No-Build (Base)	2031 Build (with PTC Master Plan Developments)
Second Avenue and W	estern Access Road					
Eastbound Second Avenue	Approach	A (7.2)	A (8.9)	B (12.0)	A (9.0)	B (12.4)
Ma a the a const	Left Turn	E (73.7)	E (75.7)	D (41.2)	E (76.6)	D (42.0)
Westbound Second Avenue	Through	A (2.8)	A (3.7)	A (4.8)	A (3.7)	A (4.8)
Second Avenue	Approach	A (3.2)	A (4.1)	A (6.4)	A (4.1)	A (6.4)
N a with h a consid	Left Turn	C (31.4)	C (31.2)	C (31.6)	C (32.1)	C (32.4)
Northbound Western Access Rd	Right Turn	C (26.4)	C (25.0)	C (25.8)	C (25.7)	C (26.4)
Western Access No	Approach	C (30.3)	C (30.3)	C (30.1)	C (31.1)	C (30.8)
Overall	Intersection	A (8.3)	B (10.4)	B (13.8)	B (10.5)	B (14.1)

⁽¹⁾ Level of service and vehicular delay calculated using HCM 6th Edition module in Synchro Traffic Signal Coordination Software, Version 10.

TABLE 3
TRIP GENERATION SUMMARY
Pittsburgh Technology Center (PTC) Garage 3 Transportation Impact Study
City of Pittsburgh, Allegheny County, Pennsylvania

Davidania		ITE Land				Trip Ger	eration (1)			
Development Component	Size	ITE Land Use Code	Trip Type (2)		A.M. Peak Hou	r		P.M. Peak Hour		
Component		OSC OOGC		Enter	Exit	Total	Enter	Exit	Total	
Back	ground Developments									
			Auto	119	19	138	23	116	139	
Riviera	155 000 CCC	710	Transit	22	4	26	4	22	26	
Riviera	155,000 GSF	710	Walk	0	0	0	0	0	0	
			Bicycle	7	1	8	1	7	8	
			SubTotal	148	24	172	28	145	173	
			Auto	156	22	178	30	146	176	
Elmhurst	111,792SF Office / 60,196	710/110	Transit	24	3	27	5	23	28	
Ellilluist	SF General Light Industrial	710/110	Walk	0	0	0	0	0	0	
			Bicycle	8	1	9	2	8	10	
			SubTotal	188	26	214	37	177	214	
	Total Auto Trips		Total	275	41	316	53	262	315	

Pittsburgh Technology C	enter Master Plan Future Sit	es							
			Auto	16	3	19	3	13	16
			Transit	3	0	3	0	3	3
Pitt Biotech Expansion	40,000 GSF	110	Walk	0	0	0	0	0	0
			Bicycle	1	0	1	0	1	1
			SubTotal	20	3	23	3	17	20
			Auto	115	19	134	21	113	134
			Transit	22	3	25	4	21	25
Parcel 8B	150,000 GSF	710	Walk	0	0	0	0	0	0
			Bicycle	7	1	8	1	7	8
			SubTotal	144	23	167	26	141	167
			Auto	74	12	86	13	67	80
			Transit	14	2	16	2	13	15
CMRI Expansion	87,000 GSF	710	Walk	0	0	0	0	0	0
			Bicycle	5	1	6	1	4	5
			SubTotal	93	15	108	16	84	100
			Auto	121	20	141	23	120	143
			Transit	23	4	27	4	23	27
PTC 2 West	160,000 GSF	710	Walk	0	0	0	0	0	0
			Bicycle	8	1	9	1	7	8
			SubTotal	152	25	177	28	150	178
	SubTotal, All Travel Modes				66	475	73	392	465
	Total Auto Trips				54	380	60	313	373

⁽¹⁾ Total number of vehicle trips generated determined through the use of methodologies presented in <u>Trip Generation, Tenth Edition</u> published by the Institute of Transportation Engineers (ITE).

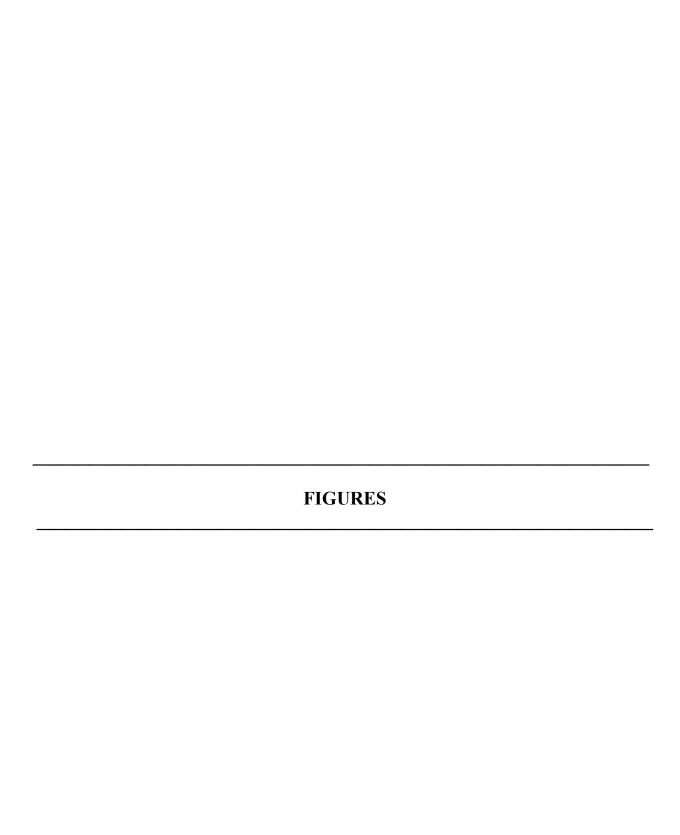
⁽²⁾ Modal split reductions are expected for the proposed development. According to the 2015 City of Pittsburgh Make My Trip Count Survey, commuter trips within the Oakland section of the City were comprised of 61% automobile, 26.1% transit, 7.2% walk, and 5.7% bicycle trips. The Make My Trip Count survey was later updated in 2018. According to this data, the PTC is included within the South Side section of Pittsburgh. Within this study area, commuter trips were comprised of 80% automobile and 20% alternative mode of travel. Finally, according to PGHSNAP data, 2011, PTC is included within the South Oakland section of the City. Within this study area, commuter trips are comprised of 55.8% automobile, 14% transit, 0% bicycle, and 30.2% walk. In order to provide a conservative analysis, all commuter modes form these surveys were compiled to develop an estimate for the PTC. Therefore, for analysis purposes, it was assumed that site generated trips for developments within the PTC would be comprised of 80% automobile, 15% transit, and 5% bicycle. No pedestrian split was assumed for analysis purposes due to the low number of pedestrians counted during the intersection turning movement counts performed at the study intersections.

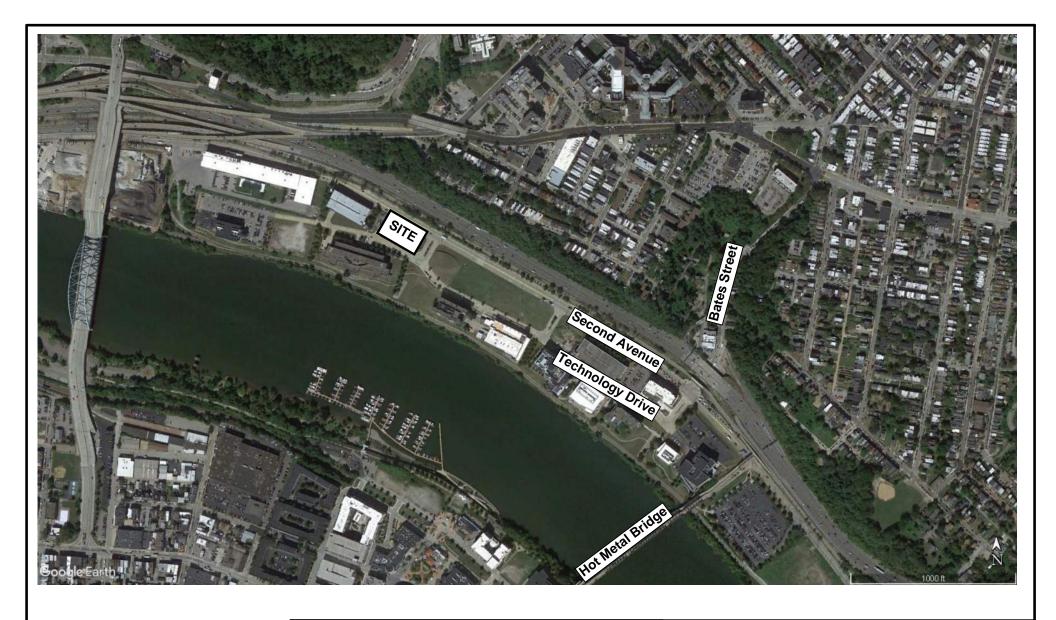
TABLE 4
QUEUE ANALYSIS SUMMARY
Pittsburgh Technology Center (PTC) Garage 3 Transportation Impact Study
City of Pittsburgh, Allegheny County, Pennsylvania

		Eviation	95th Percentile Queue Length (Feet) (1)										
		Existing Queue			A.M. Peak Hour								
Approach	Movement	Capacity (Feet) ⁽²⁾	2018 Existing	2021 No-Build (Base)	2021 Build (with PTC Master Plan Developments)	2031 No-Build (Base)	2031 Build (with PTC Master Plan Developments)						
Second Avenue and	Bates Street/Technology Dr	ive											
Eastbound	Left Turn	580	224	244	263	248	268						
Second Avenue	Through/Right Turn	900	85	106	110	108	115						
Westbound	Left Turn	100	67	154	179	154	179						
Second Avenue	Through/Right Turn	500	569	635	699	687	763						
Northbound	Left Turn/Through	155+	36	46	57	46	57						
Technology Drive	Right Turn	155+	15	24	32	24	32						
	Left Turn	180	322	354	385	390	409						
Southbound Bates Street	Left Turn/Through	180	325	366	389	395	408						
Dates Street	Right Turn	85	129	150	208	155	212						
Second Avenue and	Middle Access Road												
Eastbound Second Avenue	Through/Right Turn	850	77	98	124	104	135						
Westbound	Left Turn	200	26	56	114	58	118						
Second Avenue	Through	850	61	67	80	71	85						
Northbound Middle Access Rd	Left Turn/Right Turn	155+	6	16	31	16	32						
Second Avenue and	Western Access Road		•										
Eastbound Second Avenue	Through/Right Turn	850	100	117	168	123	177						
Westbound	Left Turn	180	43	58	135	60	135						
Second Avenue	Through	850	61	65	61	69	65						
Northbound	Left Turn	125+	11	29	44	29	44						
Western Access Rd	Right Turn	125+	6	8	18	8	18						

⁽¹⁾ Queue lengths reported represent the 95th percentile queue lengths calculated using Synchro Traffic Signal Coordination Software, Version 10. For analysis purposes vehicle car lengths are assumed to equal 25 feet.

⁽²⁾ Available queue storage obtained from Google Earth, rounded to the nearest 5 feet.


TABLE 5 QUEUE ANALYSIS SUMMARY


Pittsburgh Technology Center (PTC) Garage 3 Transportation Impact Study City of Pittsburgh, Allegheny County, Pennsylvania

		Podatio o	95th Percentile Queue Length (Feet) (1)										
		Existing Queue			P.M. Peak Hour								
Approach	Movement	Capacity (Feet) ⁽²⁾	2018 Existing	2021 No-Build (Base)	2021 Build (with PTC Master Plan Developments)	2031 No-Build (Base)	2031 Build (with PTC Master Plan Developments)						
Second Avenue and	Bates Street/Technology Dr	ive											
Eastbound	Left Turn	580	338	384	452	413	467						
Second Avenue	Through/Right Turn	900	322	378	430	395	442						
Westbound	Left Turn	100	26	49	54	49	54						
Second Avenue	Through/Right Turn	500	323	366	382	385	413						
Northbound	Left Turn/Through	175	196	243	324	256	337						
Technology Drive	Right Turn	155+	52	100	144	102	150						
0	Left Turn	180	290	307	307	329	329						
Southbound Bates Street	Left Turn/Through	180	293	306	314	327	333						
Dates Street	Right Turn	85	60	64	73	67	74						
Second Avenue and	Middle Access Road												
Eastbound Second Avenue	Through/Right Turn	850	228	281	337	302	359						
Westbound	Left Turn	200	17	32	45	32	45						
Second Avenue	Through	850	33	46	54	48	56						
Northbound Middle Access Rd	Left Turn/Right Turn	155+	42	101	150	101	151						
Second Avenue and	Western Access Road												
Eastbound Second Avenue	Through/Right Turn	850	270	317	353	340	379						
Westbound	Left Turn	180	8	8	35	8	35						
Second Avenue	Through	850	46	60	75	62	78						
Northbound	Left Turn	125+	109	163	216	163	216						
Western Access Rd	Right Turn	125+	24	23	36	23	36						

⁽¹⁾ Queue lengths reported represent the 95th percentile queue lengths calculated using Synchro Traffic Signal Coordination Software, Version 10. For analysis purposes vehicle car lengths are assumed to equal 25 feet.

⁽²⁾ Available queue storage obtained from Google Earth, rounded to the nearest 5 feet.

333 Baldwin Road · Pittsburgh, PA 15205 412-429-2324 · 800-365-2324

www.cecinc.com

Pittsburgh Technology Center PTC Garage 3 Transportation Impact Study

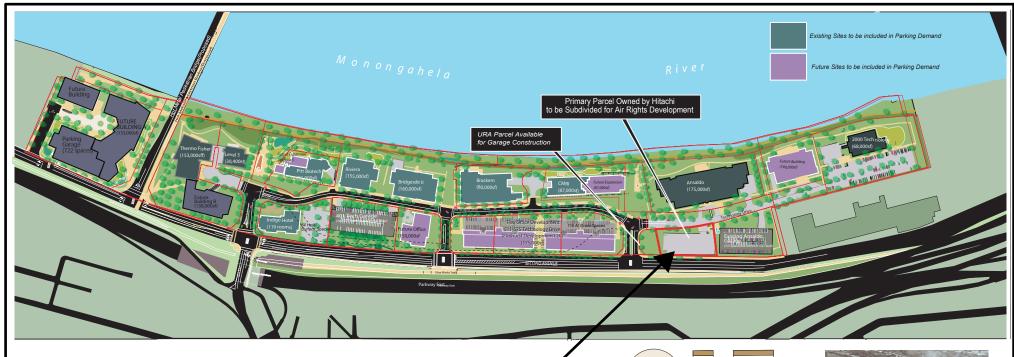
Site Location

DRAWN BY: cd	CHECKED BY: jmd	APPROVED BY: CAD	FIGURE NO.:
DATE: June 2020	DWG SCALE: nts	PROJECT NO: 300-725	1

Legend:

- Signalized Study Intersection

Civil & Environmental Consultants, Inc.

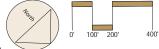

333 Baldwin Road · Pittsburgh, PA 15205 412-429-2324 · 800-365-2324

www.cecinc.com

Pittsburgh Technology Center PTC Garage 3 Transportation Impact Study

Study Intersections

DRAWN BY: cd	CHECKED BY:	jmd	APPROVED BY:	CAD	FIGURE NO.:	2
DATE: June 2020	DWG SCALE:	nts	PROJECT NO:	300-725]	2



Pittsburgh Technology Center Garage RFP Exhibit

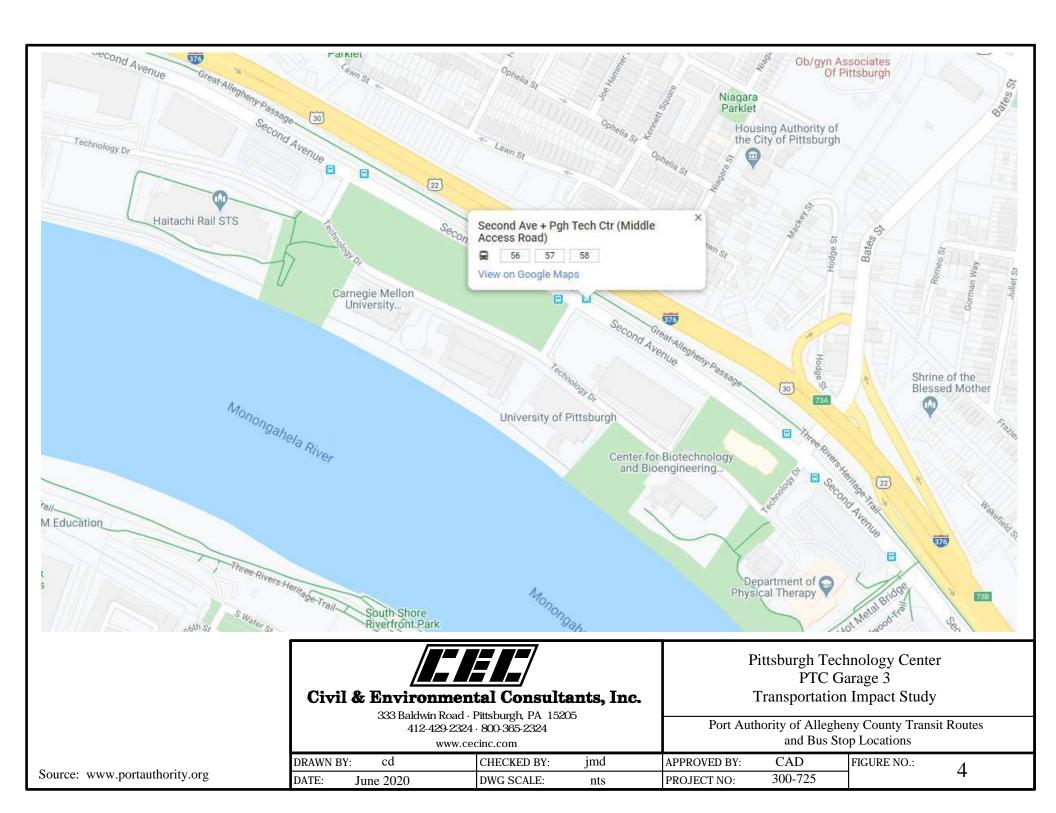
Garage RFP EXNIBIT

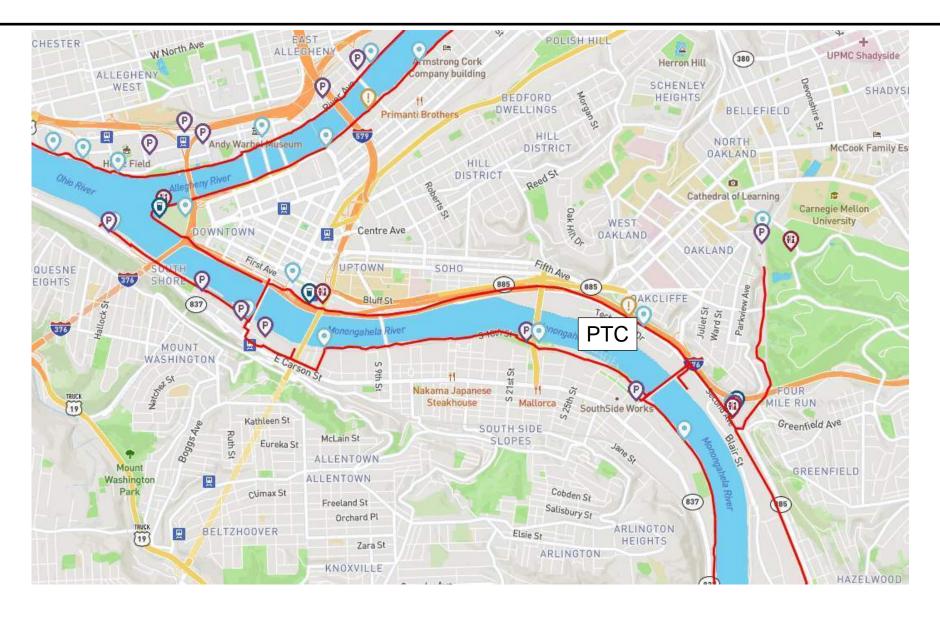
August 2019

in information included herein is for general information purposes only. The URA makes representations or warranties of any time, despress or implied, as to accuracy representations or surranties led any time speec to the impages and information contained hereon, as should independingly review and verify the accuracy and usuability of all information as should independ any other time. The contained are should be also all information and the speech as the state of the speech and the speech and the speech and the speech as the spe

Any suggestions are for discussion only and are not a binding offer or agreemen

Civil & Environmental Consultants, Inc.


333 Baldwin Road · Pittsburgh, PA 15205 412-429-2324 · 800-365-2324


www.cecinc.com

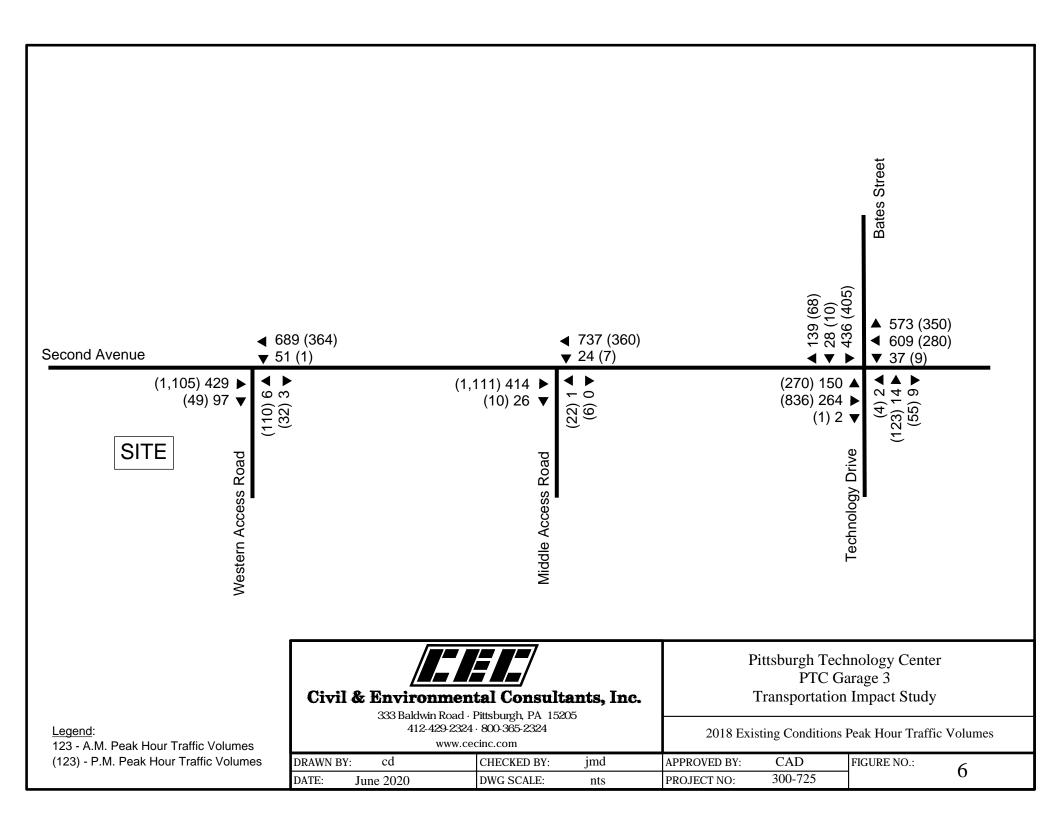
Pittsburgh Technology Center PTC Garage 3 Transportation Impact Study

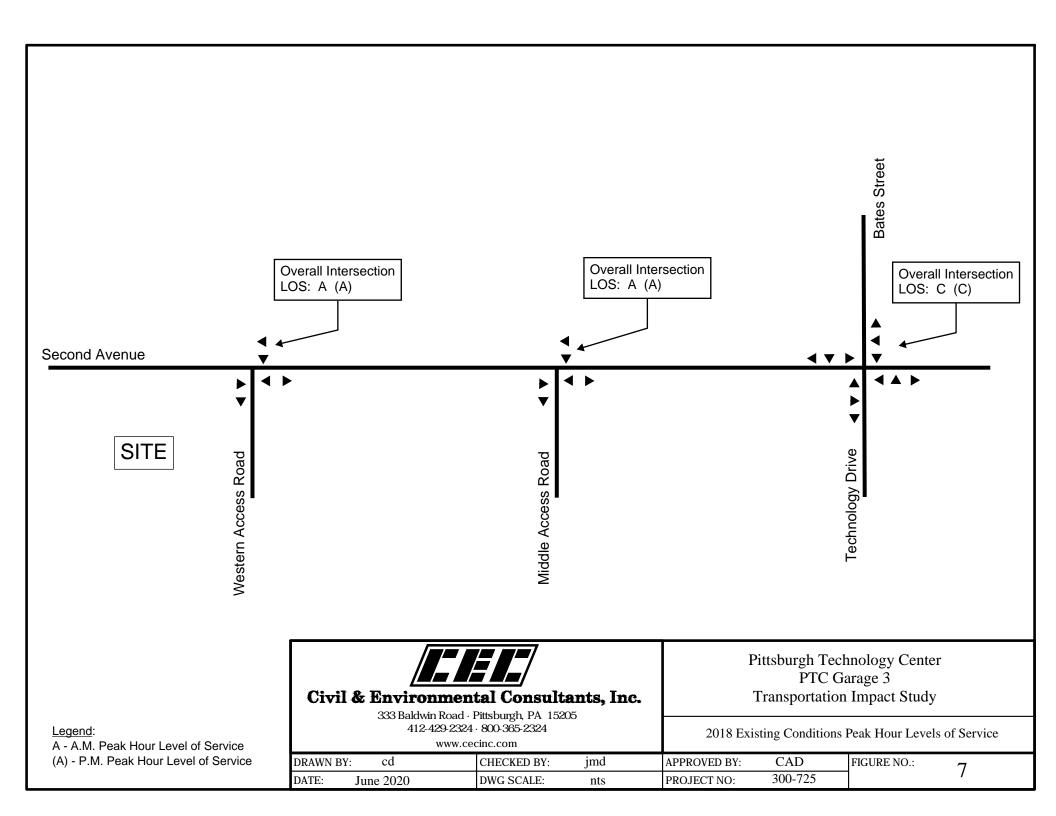
Site Plan / PTC Master Plan

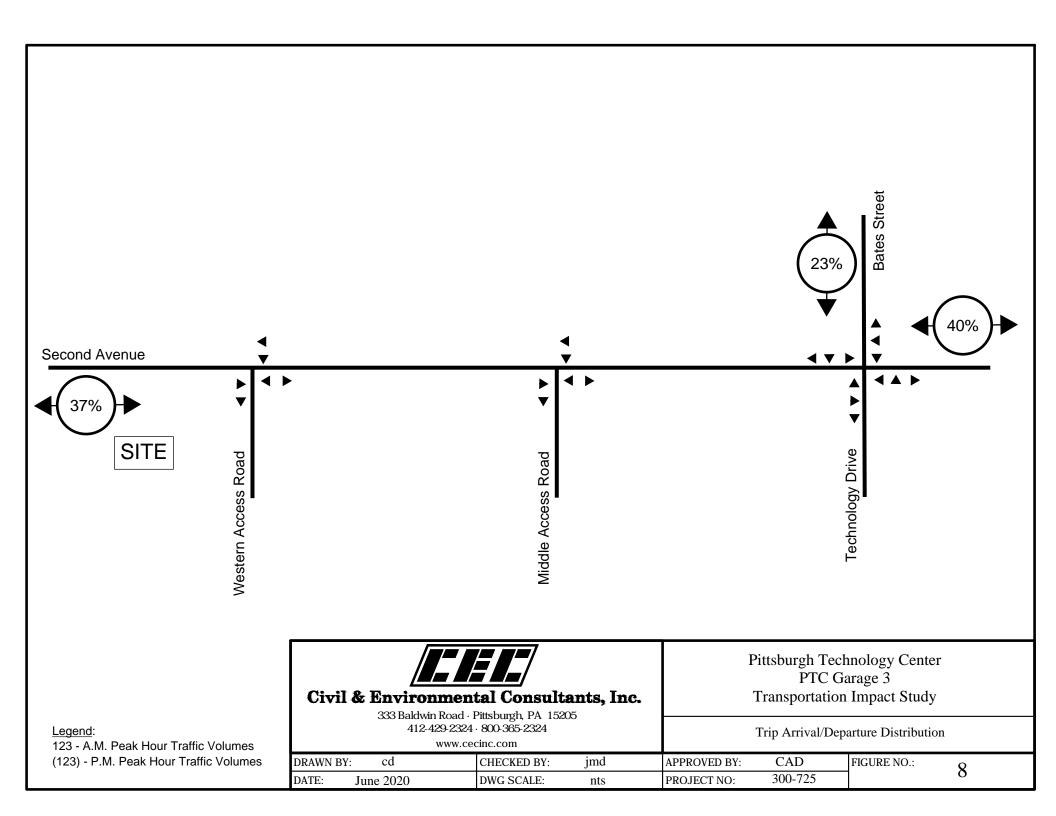
DD 44404 D		aveaven nu	11	ADDD GUIDD DV	CAD	Travers vo	
DRAWN B	Y: ca	CHECKED BY:	Jmd	APPROVED BY:	CAD	FIGURE NO.:	2
DATE:	June 2020	DWG SCALE:	nts	PROJECT NO:	300-725		3

333 Baldwin Road · Pittsburgh, PA 15205 412-429-2324 · 800-365-2324

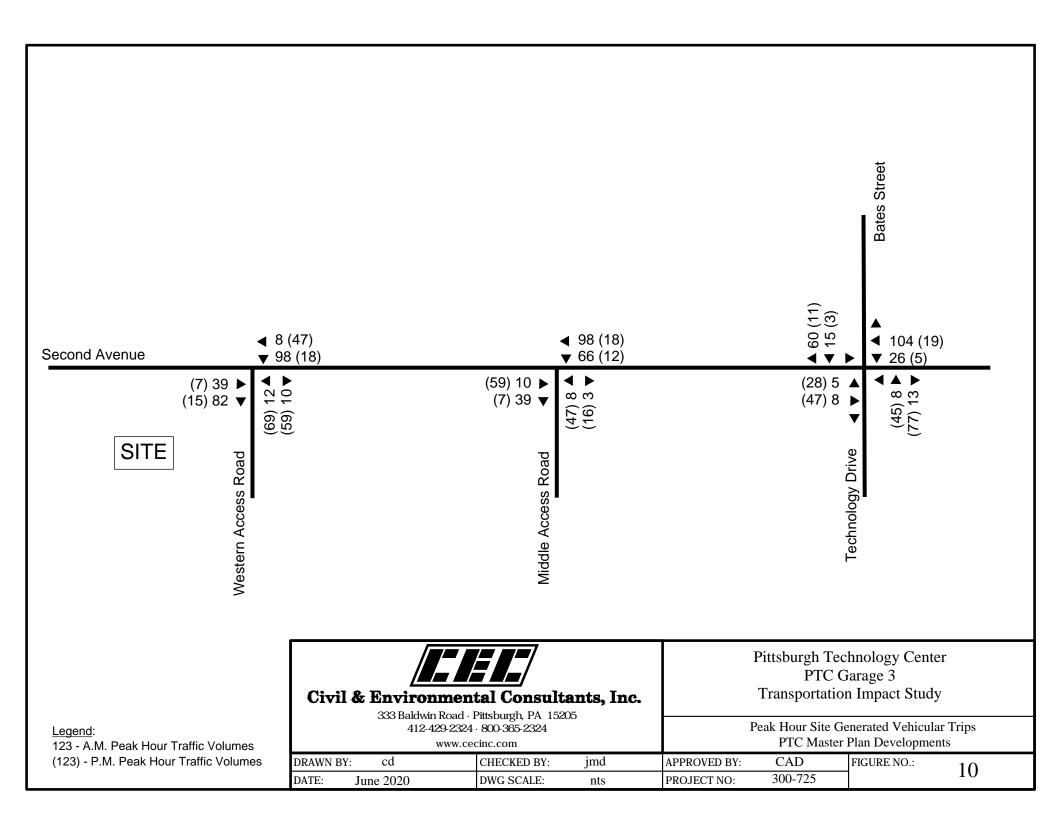
www.cecinc.com

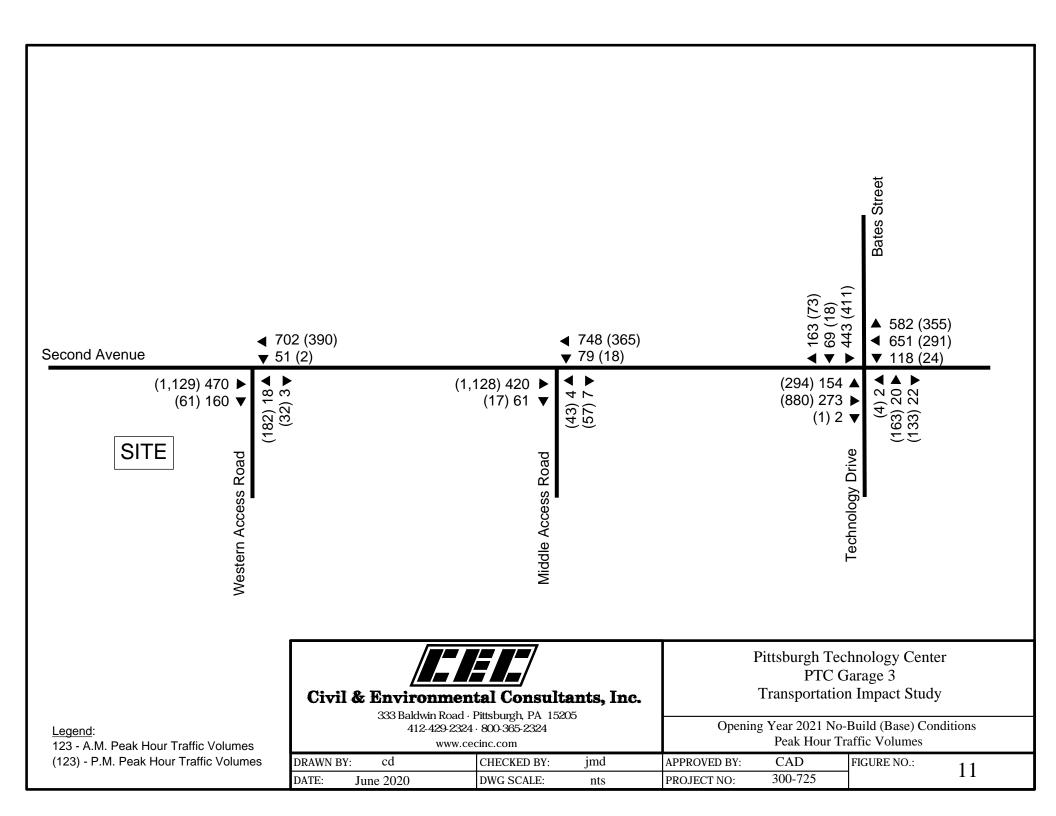

Pittsburgh Technology Center PTC Garage 3 Transportation Impact Study

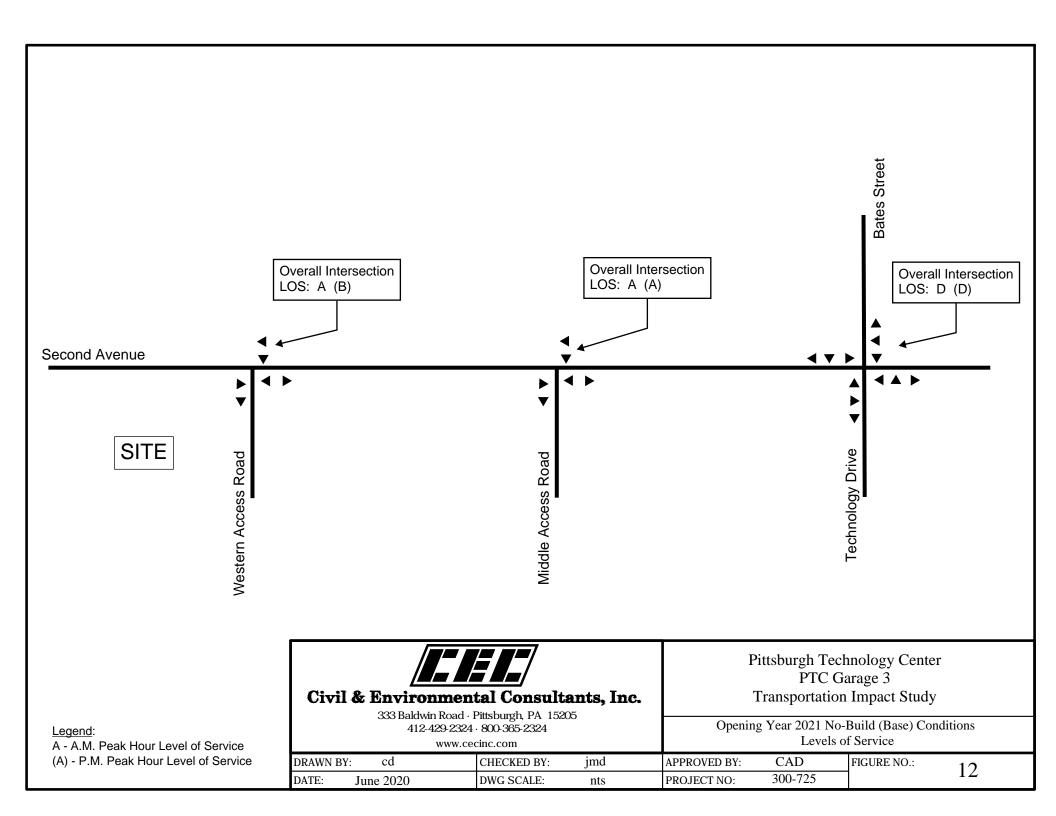

Three Rivers Heritage Trail Map

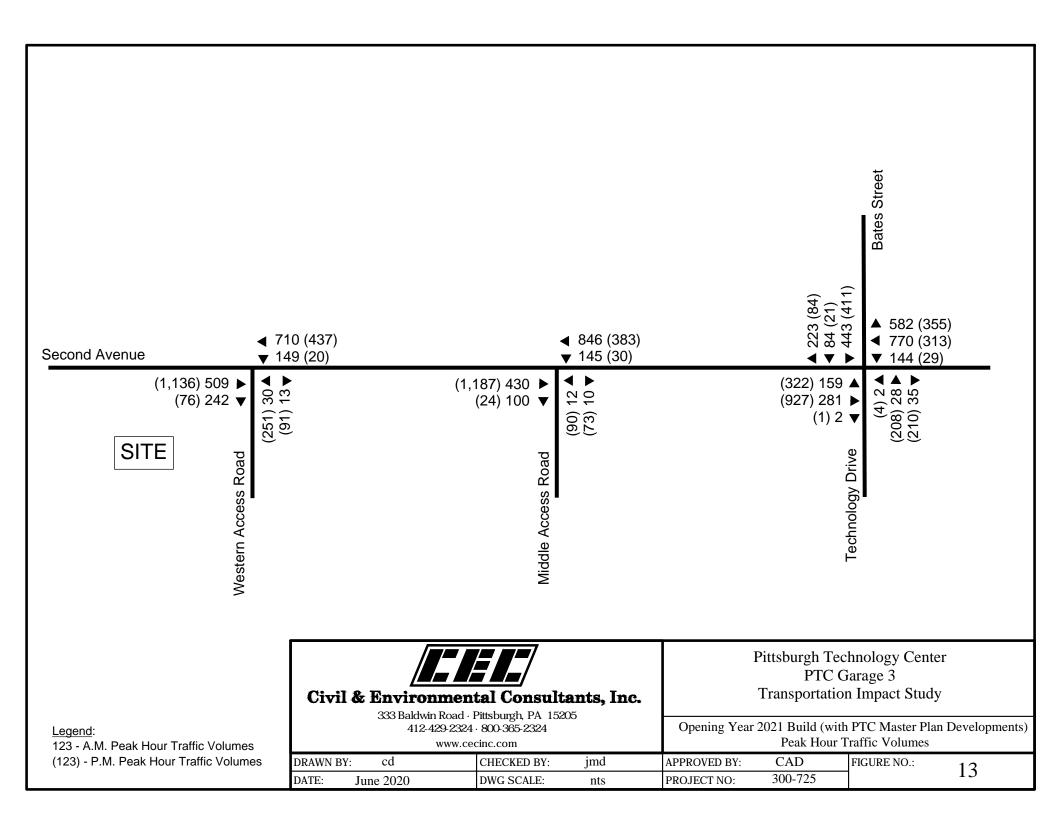

DRAWN BY: cd CHECKED BY: jmd APPROVED BY: CAD FIGURE NO.:

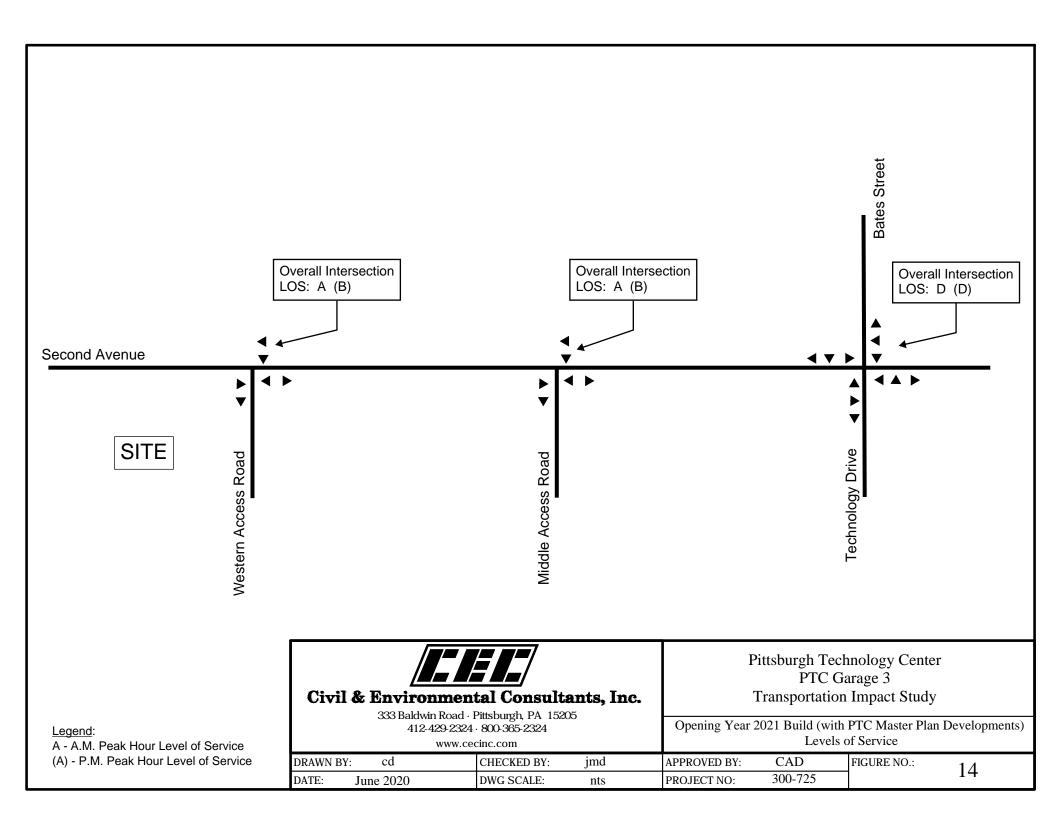

DATE: June 2020 DWG SCALE: nts PROJECT NO: 300-725

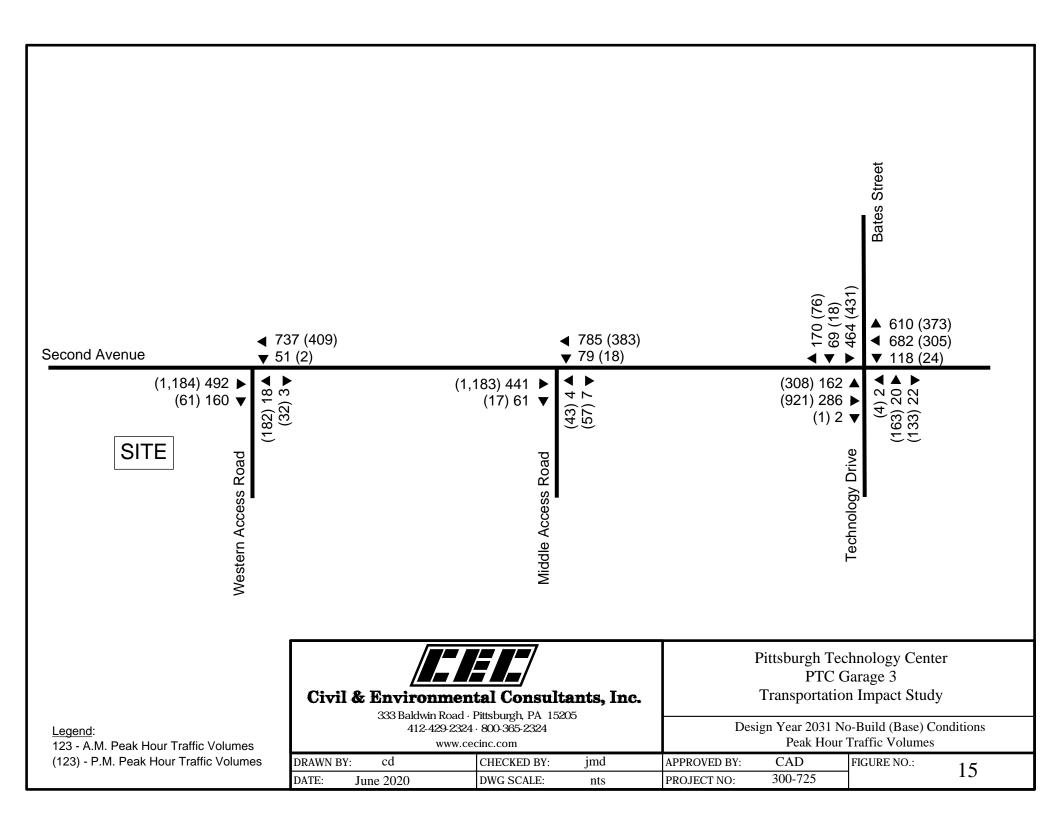

Source: www.friendsoftheriverfront.org

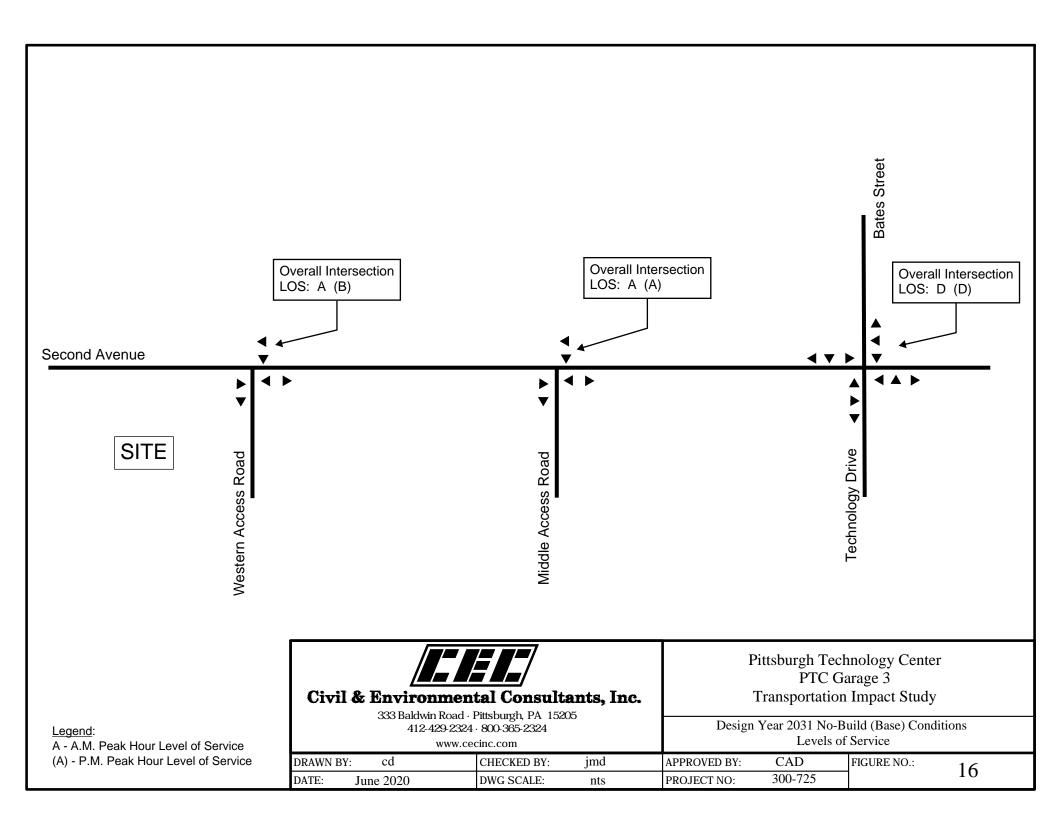


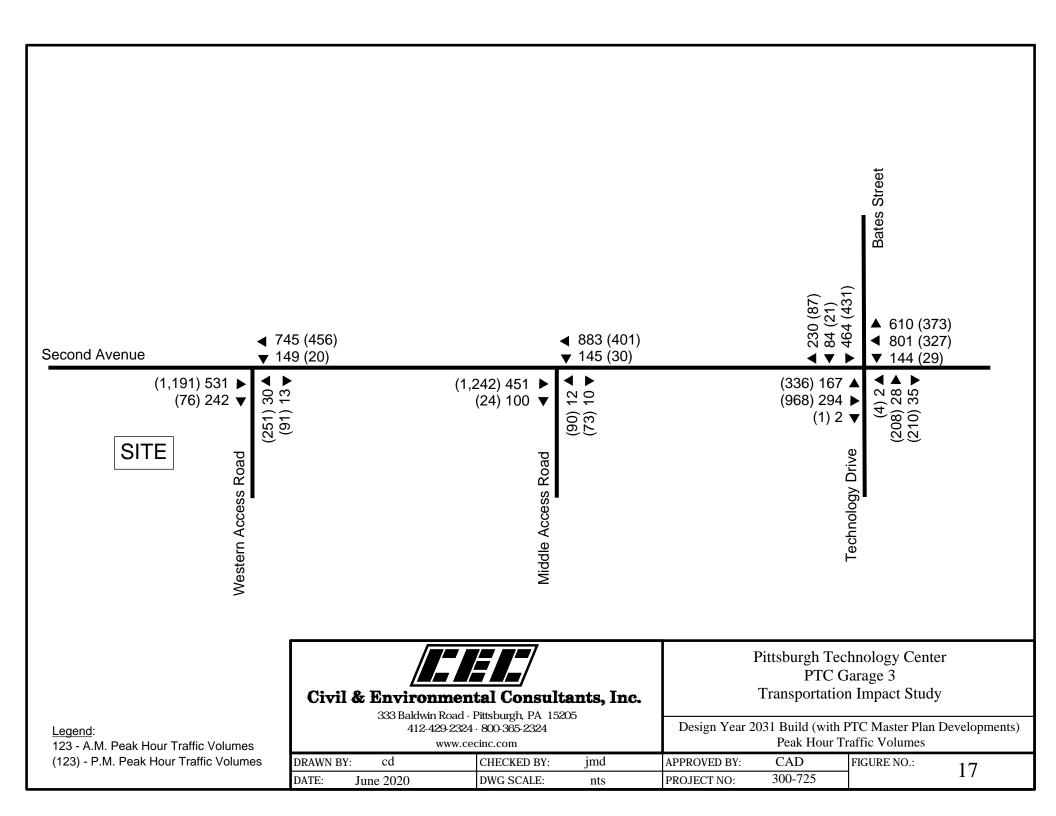


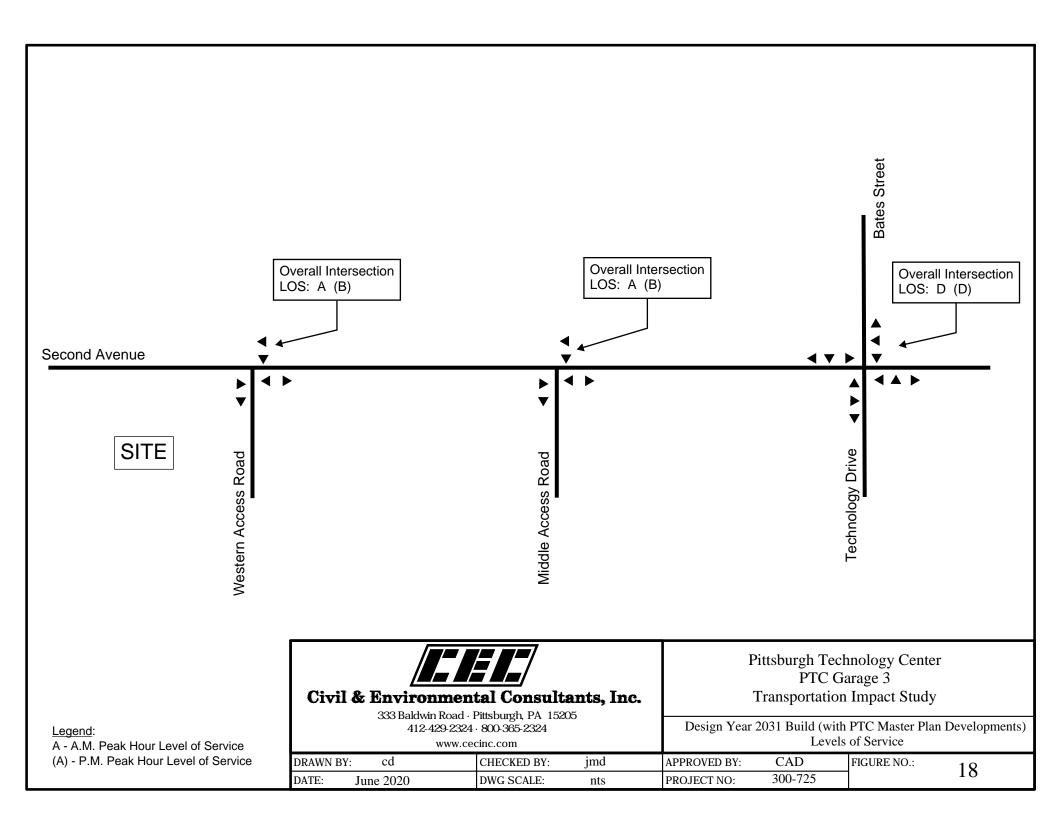


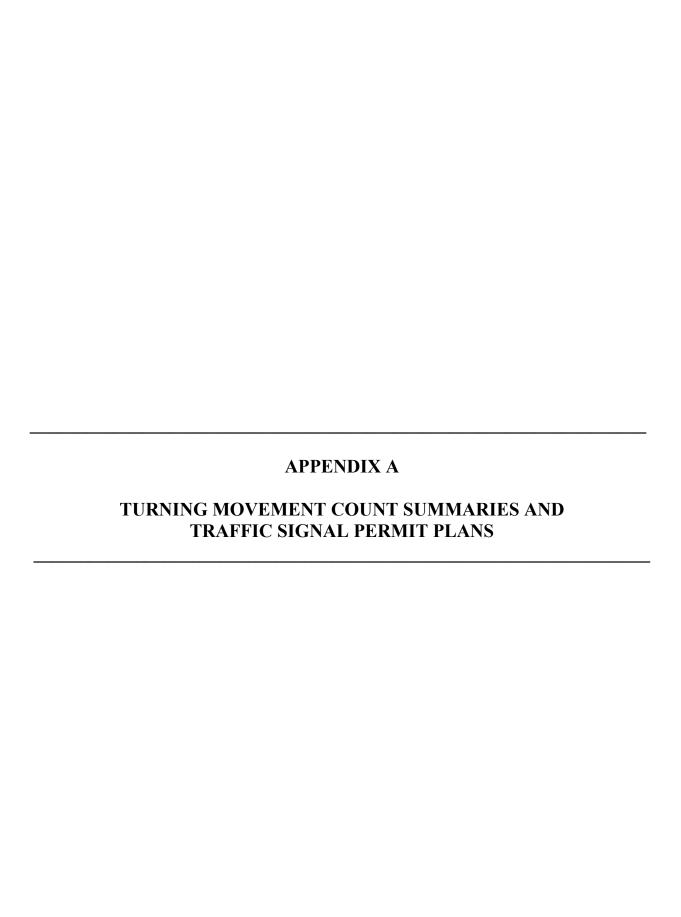












333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Bates_St_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Lights - Buses - Trucks

										itea- Lignts	- buses			<u> </u>				D . O			1
			econd A				_	econd A					nnology					Bates S			ĺ
			<u>Eastbou</u>	<u>nd</u>			V	<u>Vestbou</u>	<u>nd</u>			Ņ	<u>orthbou</u> i	<u>nd</u>			<u> </u>	<u>outhbou</u>	<u>nd</u>		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	29	71	0	0	100	7	138	152	0	297	1	1	2	0	4	109	6	25	0	140	541
07:15 AM	41	71	0	0	112	9	157	155	0	321	0	0	0	0	0	110	9	23	0	142	575
07:30 AM	41	74	0	0	115	13	142	159	0	314	2	4	1	0	7	109	8	30	0	147	583
07:45 AM	32	63	0	0	95	8	159	141	0	308	0	1	3	0	4	128	5	40	0	173	580
Total	143	279	0	0	422	37	596	607	0	1240	3	6	6	0	15	456	28	118	0	602	2279
	i																				1
08:00 AM	41	59	0	0	100	8	162	138	0	308	0	4	4	0	8	105	7	33	0	145	561
08:15 AM	36	68	2	0	106	8	146	135	0	289	0	5	1	0	6	94	8	36	0	138	539
08:30 AM	25	65	0	0	90	9	146	152	0	307	0	3	1	0	4	91	12	29	0	132	533
08:45 AM	28	66	3_	0	97	14	104	131	0	249	0	2	1_	0	3	104	9	35	0	148	497
Total	130	258	5	0	393	39	558	556	0	1153	0	14	7	0	21	394	36	133	0	563	2130
0 17.11	070	507	_		0.45	70	4454	4400		0000		00	40	•	00	050	0.4	054	•	4405	1400
Grand Total	273	537	5	0	815	76	1154	1163	0	2393	3	20	13	0	36	850	64	251	0	1165	4409
Apprch %	33.5	65.9	0.6	0		3.2	48.2	48.6	0		8.3	55.6	36.1	0		73	5.5	21.5	0		
Total %	6.2	12.2	0.1	0	18.5	1.7	26.2	26.4	0	54.3	0.1	0.5	0.3	0	0.8	19.3	1.5	5.7	0	26.4	
Lights	257	457	5	0	719	72	1107	1091	0	2270	3	15	12	0	30	815	63	246	0	1124	4143
% Lights	94.1	85.1	100	0	88.2	94.7	95.9	93.8	0	94.9	100	75	92.3	0	83.3	95.9	98.4	98	0	96.5	94
Buses	8	54	0	0	62	1	18	32	0	51	0	4	1	0	5	13	0	2	0	15	133
% Buses	2.9	10.1	0	0	7.6	1.3	1.6	2.8	0	2.1	0	20	7.7	0	13.9	1.5	0	8.0	0	1.3	3
Trucks	8	26	0	0	34	3	29	40	0	72	0	1	0	0	1	22	1	3	0	26	133
% Trucks	2.9	4.8	0	0	4.2	3.9	2.5	3.4	0	3	0	5	0	0	2.8	2.6	1.6	1.2	0	2.2	3

		_	econd Av				Second Ave Westbound						nnology [lorthbour			Bates St Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30	AM to 08:	15 AM - P	eak 1 of 1		· ·	•									•					
Peak Hour for Entire	Intersection	Begins a	t 07:30 AM	1																	
07:30 AM	41	74	0	0	115	13	142	159	0	314	2	4	1	0	7	109	8	30	0	147	583
07:45 AM	32	63	0	0	95	8	159	141	0	308	0	1	3	0	4	128	5	40	0	173	580
08:00 AM	41	59	0	0	100	8	162	138	0	308	0	4	4	0	8	105	7	33	0	145	561
08:15 AM	36	68	2	0	106	8	146	135	0	289	0	5	1	0	6	94	8	36	0	138	539
Total Volume	150	264	2	0	416	37	609	573	0	1219	2	14	9	0	25	436	28	139	0	603	2263
% App. Total	36.1	63.5	0.5	0		3	50	47	0		8	56	36	0		72.3	4.6	23.1	0		
PHF	.915	.892	.250	.000	.904	.712	.940	.901	.000	.971	.250	.700	.563	.000	.781	.852	.875	.869	.000	.871	.970
Lights	142	226	2	0	370	35	587	534	0	1156	2	11	8	0	21	421	27	137	0	585	2132
% Lights	94.7	85.6	100	0	88.9	94.6	96.4	93.2	0	94.8	100	78.6	88.9	0	84.0	96.6	96.4	98.6	0	97.0	94.2
Buses	4	29	0	0	33	0	12	15	0	27	0	2	1	0	3	6	0	2	0	8	71
% Buses	2.7	11.0	0	0	7.9	0	2.0	2.6	0	2.2	0	14.3	11.1	0	12.0	1.4	0	1.4	0	1.3	3.1
Trucks	4	9	0	0	13	2	10	24	0	36	0	1	0	0	1	9	1	0	0	10	60
% Trucks	2.7	3.4	0	0	3.1	5.4	1.6	4.2	0	3.0	0	7.1	0	0	4.0	2.1	3.6	0	0	1.7	2.7

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Bates_St_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Bicycles on Road

			\ Ι Λ							Tillieu- Dic	y cics on			Dation				D-4 0			1
			Second A					econd A					nology					Bates S			
			Eastbour	nd			V	Vestbour	<u>nd</u>			N	orthbou	nd			So	outhbou	<u>nd</u>		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %																					

		S	econd Av	ve			S	econd Av	/e			Tecl	nnology [Drive				Bates St			
			Eastboun	d			V	Vestboun	ıd			N	lorthbour	ıd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30) AM to 08	:15 AM - P	eak 1 of 1																	
Peak Hour for Entire	Intersectio	n Begins a	at 07:30 AN	Λ																	
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Bates_St_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Pedestrians

			econd A					econd A	ve	s Filiteu- i		Tech	nnology					Bates S			
			<u> astbour</u>	<u>na</u>			V	<u>Vestbour</u>	<u>na</u>			Ņ	<u>orthbou</u> i	<u>na </u>			5	<u>outhbou</u>			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
07:15 AM	0	0	0	2	2	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	5
07:30 AM	0	0	0	7	7	0	0	0	0	0	0	0	0	3	3	0	0	0	1	1	11
07:45 AM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11_
Total	0	0	0	10	10	0	0	0	1	1	0	0	0	5	5	0	0	0	2	2	18
08:00 AM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
08:15 AM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2
08:30 AM	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	3
08:45 AM	0	0	0	5	5	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	6
Total	0	0	0	7	7	0	0	0	2	2	0	0	0	1	1	0	0	0	3	3	13
Grand Total	0	0	0	17	17	0	0	0	3	3	0	0	0	6	6	0	0	0	5	5	31
Apprch %	0	0	0	100		0	0	0	100		0	0	0	100		0	0	0	100		
Total %	0	0	0	54.8	54.8	0	0	0	9.7	9.7	0	0	0	19.4	19.4	0	0	0	16.1	16.1	

		S	Second A	ve			S	econd Av	/e			Tech	nnology [Prive				Bates St			
			Eastboun	nd			V	Vestboun	d			N	lorthboun	d			S	Southbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30	AM to 08	:15 AM - F	eak 1 of 1	1																
Peak Hour for Entire	Intersection	n Begins a	at 07:30 Al	M																	
07:30 AM	0	0	0	7	7	0	0	0	0	0	0	0	0	3	3	0	0	0	1	1	11
07:45 AM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:00 AM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
08:15 AM	0	0	0	1_	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1_	1	2
Total Volume	0	0	0	9	9	0	0	0	1	1	0	0	0	3	3	0	0	0	3	3	16
% App. Total	0	0	0	100		0	0	0	100		0	0	0	100		0	0	0	100		
PHF	.000	.000	.000	.321	.321	.000	.000	.000	.250	.250	.000	.000	.000	.250	.250	.000	.000	.000	.750	.750	.364

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Bates_St_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups	Printed-	Lights	- Buses -	Trucks

		S	Second Av	ve			S	Second Av	√e			Te	chnology	, Dr				Bates St			1
		F	Eastboun	d			V	Vestboun	ıd				Iorthboun				S	<u>Southboun</u>	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	52	163	1	0	216	2	70	91	0	163	1	37	10	0	48	92	3	13	0	108	535
04:15 PM	85	243	0	0	328	1	63	101	0	165	2	32	12	0	46	95	2	11	0	108	647
04:30 PM	70	207	0	0	277	2	62	87	0	151	0	21	16	0	37	112	1	23	0	136	601
04:45 PM	63	223	0	0	286	4	85	71	0	160	1	33	17	0	51	106	4	21	0	131	628
Total	270	836	1	0	1107	9	280	350	0	639	4	123	55	0	182	405	10	68	0	483	2411
1										1											
05:00 PM	31	111	0	0	142	2	77	93	0	172	3	30	17	0	50	94	5	17	0	116	480
05:15 PM	38	103	0	0	141	3	55	86	0	144	1	41	9	0	51	120	1	25	0	146	482
05:30 PM	37	117	0	0	154	2	88	111	0	201	0	32	9	0	41	98	2	23	0	123	519
05:45 PM	25	119	0	0	144	2	63	102	0	167	2	15	17	0	34	124	4	16	0	144	489
Total	131	450	0	0	581	9	283	392	0	684	6	118	52	0	176	436	12	81	0	529	1970
1 .										1											
Grand Total	401	1286	1	0	1688	18	563	742	0	1323	10	241	107	0	358	841	22	149	0	1012	4381
Apprch %	23.8	76.2	0.1	0		1.4	42.6	56.1	0		2.8	67.3	29.9	0		83.1	2.2	14.7	0	I	í
Total %	9.2	29.4	0	0	38.5	0.4	12.9	16.9	0	30.2	0.2	5.5	2.4	0	8.2	19.2	0.5	3.4	0	23.1	
Lights	397	1252	1	0	1650	17	535	714	0	1266	10	234	105	0	349	828	21	144	0	993	4258
% Lights	99	97.4	100	0	97.7	94.4	95	96.2	0	95.7	100	97.1	98.1	0	97.5	98.5	95.5	96.6	0	98.1	97.2
Buses	3	32	0	0	35	0	27	18	0	45	0	6	2	0	8	6	0	2	0	8	96
% Buses	0.7	2.5	0	0	2.1	0	4.8	2.4	0	3.4	0	2.5	1.9	0	2.2	0.7	0_	1.3	0	0.8	2.2
Trucks	1	2	0	0	3	1	1	10	0	12	0	1	0	0	1	7	1	3	0	11	27
% Trucks	0.2	0.2	0	0	0.2	5.6	0.2	1.3	0	0.9	0	0.4	0	0	0.3	0.8	4.5	2	0	1.1	0.6

4																					
1	ı	S [,]	econd Av	/e			ξ	Second Av	ve			Tε	echnology	Dr				Bates St			
		F	Eastbound	b			V	Westboun	ıd			1	Northboun	nd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 04	:00 PM to	'05:45 P	M - Peak	1 of 1																
Peak Hour for Entir	re Intersec	tion Begi	ns at 04:	JO PM																	ľ
04:00 PM	52	163	1	0	216	2	70	91	0	163	1	37	10	0	48	92	3	13	0	108	535
04:15 PM	85	243	0	0	328	1	63	101	0	165	2	32	12	0	46	95	2	11	0	108	647
04:30 PM	70	207	0	0	277	2	62	87	0	151	0	21	16	0	37	112	1	23	0	136	601
04:45 PM	63	223	0	0	286	4	85	71	0	160	11	33	17	0	51	106	4	21	0	131	628
Total Volume	270	836	1	0	1107	9	280	350	0	639	4	123	55	0	182	405	10	68	0	483	2411
% App. Total	24.4	75.5	0.1	0		1.4	43.8	54.8	0		2.2	67.6	30.2	0		83.9	2.1	14.1	0		
PHF	.794	.860	.250	.000	.844	.563	.824	.866	.000	.968	.500	.831	.809	.000	.892	.904	.625	.739	.000	.888	.932
Lights	267	816	1	0	1084	9	258	334	0	601	4	120	54	0	178	395	10	65	0	470	2333
% Lights	98.9	97.6	100	0	97.9	100	92.1	95.4	0	94.1	100	97.6	98.2	0	97.8	97.5	100	95.6	0	97.3	96.8
Buses	3	18	0	0	21	0	21	8	0	29	0	3	1	0	4	4	0	1	0	5	59
% Buses	1.1	2.2	0	0	1.9	0	7.5	2.3	0	4.5	0	2.4	1.8	0	2.2	1.0	0	1.5	0	1.0	2.4
Trucks	0	2	0	0	2	0	1	8	0	9	0	0	0	0	0	6	0	2	0	8	19
% Trucks	0	0.2	0	0	0.2	0	0.4	2.3	0	1.4	0	0	0	0	0	1.5	0	2.9	0	1.7	0.8
4																					

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Bates_St_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Bicycles on Road

										i illitica biç	y cico ciri i										,
			Second Av			i		Second Av				Τe	echnology	/ Dr				Bates St		J	1
		F	Eastboun				<u>V</u>	Westboun	ıd			Ņ	Northbour	nd			Ş	<u>Southbour</u>	nd	!	
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ı 0
04:30 PM	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i .																					
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '
05:30 PM	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	ı	í
Total %						i														I	í
1																					

	i	S	Second Av	/e			ક	Second Av	∕e			Te	chnology	Dr				Bates St			
	i	E	Eastbound	<u>d</u>			<u>V</u>	Westboun	id			N	Iorthboun	d			S	Southboun	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysi	s From 04	:00 PM to	ວ 05:45 P	M - Peal	к 1 of 1			_					-					_			
Peak Hour for Enti	re Intersec	tion Begi	ins at 04:/	00 PM																	
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		. 0_	0_	0_	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Bates_St_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed-Pedestrians

4										ps i illited i	Cucstrial										1
	1		Second Av		I	1		Second Av				Τe	echnology	/ Dr				Bates St		J	1
	<u> </u>	F	Eastboun	ıd			\	Westboun	ıd				Northbour	nd			Ş	Southbour 3 countries and 1 co			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	7	7	0	0	0	0	0	0	0	0	6	6	0	0	0	1	1	14
04:15 PM	0	0	0	4	4	0	0	0	1	1	0	0	0	3	3	0	0	0	2	2	10
04:30 PM	0	0	0	14	14	0	0	0	1	1	0	0	0	8	8	0	0	0	3	3	26
04:45 PM	0	0	0	12	12	0	0	0	1	1	0	0	0	7	7	0	0	0	5	5	25
Total	0	0	0	37	37	0	0	0	3	3	0	0	0	24	24	0	0	0	11	11	75
i																					
05:00 PM	0	0	0	6	6	0	0	0	0	0	0	0	0	3	3	0	0	0	3	3	12
05:15 PM	0	0	0	2	2	0	0	0	1	1	0	0	0	1	1	0	0	0	2	2	6
05:30 PM	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	4
05:45 PM	0	0	0	6	6	0	0	0	0	0	0	0	0	3	3	0	0	0	1_	1_	10_
Total	0	0	0	17	17	0	0	0	1	1	0	0	0	7	7	0	0	0	7	7	32
1																					
Grand Total	0	0	0	54	54	0	0	0	4	4	0	0	0	31	31	0	0	0	18	18	107
Apprch %	0	0	0	100	- 1	0	0	0	100		0	0	0	100		0	0	0	100	I	ſ
Total %	0	0	0	50.5	50.5	0	0	0	3.7	3.7	0	0	0	29	29	0	0	0	16.8	16.8	ſ
1										•					·					·	

	1	S	Second Av	/e	J	(દ	Second Av	∕e			Te	chnology	Dr				Bates St		J	1
		F	Eastbound	d			V	Westboun	ıd				Iorthboun				S	Southboun	ıd		1
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysi	s From 04	:00 PM tr	ວ 05:45 P	M - Peal	к 1 of 1			_					_					_			
Peak Hour for Enti	re Intersec	tion Begi	ins at 04:(.00 PM																	· .
04:00 PM	0	0	0	7	7	. 0	0	0	0	0	0	0	0	6	6	0	0	0	1	1	14
04:15 PM	0	0	0	4	4	. 0	0	0	1	1	0	0	0	3	3	0	0	0	2	2	10
04:30 PM	0	0	0	14	14	. 0	0	0	1	1	0	0	0	8	8	0	0	0	3	3	26
04:45 PM	0	0	0	12	12	0_	0_	0	1	1	0	0	0	7	7	0	0	0	5	5	25
Total Volume	0	0	0	37	37	0	0	0	3	3	0	0	0	24	24	0	0	0	11	11	75
% App. Total	0_	0	0	100		. 0_	0	0_	100		0	0	0	100		0	0	0	100		<u> </u>
PHF	.000	.000	.000	.661	.661	.000	.000	.000	.750	.750	.000	.000	.000	.750	.750	.000	.000	.000	.550	.550	.721
4																					

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Middle_Access_Drive_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Cars - Buses - Trucks

		S	econd A	ve			S	econd A	•	ilcu Oais	Buooc	Middle	e Access	s Drive							
		E	Eastbour	nd			V	/estbour	nd			N	orthbou	nd			S	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	99	4	0	103	1	172	0	0	173	0	0	0	0	0	0	0	0	0	0	276
07:15 AM	0	110	1	0	111	2	162	0	0	164	0	0	0	0	0	0	0	0	0	0	275
07:30 AM	0	115	3	0	118	5	172	0	0	177	0	0	0	0	0	0	0	0	0	0	295
07:45 AM	0	98	10	0	108	4	198	0	0	202	11	0	0	0	1	0	0	0	0	0	311
Total	0	422	18	0	440	12	704	0	0	716	1	0	0	0	1	0	0	0	0	0	1157
00.00 AM	0	00	0	0	407	0	400	0	0	204	0	0	0	0	ا م	0	0	0	0	0	200
08:00 AM	0	99	8	0	107	9	192	0	0	201	0	0	0	0	0	0	0	0	0	0	308
08:15 AM	0	102	5	0	107	6	175	0	0	181 176	0	0	0	0	0	0	0	0	0	0	288
08:30 AM	0	93	10	0	103	10	166	0	0		0	0	2	0	2	0	0	0	0	0	281
08:45 AM	0	94	- 4	0	98	/	127	0	0	134		0	1	0		0	0	0	0	0	235
Total	0	388	27	0	415	32	660	0	0	692	2	0	3	0	5	0	0	0	0	0	1112
Grand Total	0	810	45	0	855	44	1364	0	0	1408	3	0	3	0	6	0	0	0	0	0	2269
Apprch %	0	94.7	5.3	0		3.1	96.9	0	0		50	0	50	0		0	0	0	0		
Total %	0	35.7	2	0	37.7	1.9	60.1	0	0	62.1	0.1	0	0.1	0	0.3	0	0	0	0	0	
Cars	0	713	44	0	757	40	1319	0	0	1359	3	0	3	0	6	0	0	0	0	0	2122
% Cars	0	88	97.8	0	88.5	90.9	96.7	0	0	96.5	100	0	100	0	100	0	0	0	0	0	93.5
Buses	0	63	0	0	63	3	16	0	0	19	0	0	0	0	0	0	0	0	0	0	82
% Buses	0	7.8	0	0	7.4	6.8	1.2	0	0	1.3	0	0	0	0	0	0	0	0	0	0	3.6
Trucks	0	34	1	0	35	1	29	0	0	30	0	0	0	0	0	0	0	0	0	0	65
% Trucks	0	4.2	2.2	0	4.1	2.3	2.1	0	0	2.1	0	0	0	0	0	0	0	0	0	0	2.9

		_	econd Av				_	econd Av					Access orthboun				S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30	AM to 08:	15 AM - P	eak 1 of 1	1	,	•							•		•					
Peak Hour for Entire	Intersection	Begins a	t 07:30 AN	1																	
07:30 AM	0	115	3	0	118	5	172	0	0	177	0	0	0	0	0	0	0	0	0	0	295
07:45 AM	0	98	10	0	108	4	198	0	0	202	1	0	0	0	1	0	0	0	0	0	311
08:00 AM	0	99	8	0	107	9	192	0	0	201	0	0	0	0	0	0	0	0	0	0	308
08:15 AM	0	102	5	0	107	6	175	0	0	181	0	0	0	0	0	0	0	0	0	0	288
Total Volume	0	414	26	0	440	24	737	0	0	761	1	0	0	0	1	0	0	0	0	0	1202
% App. Total	0	94.1	5.9	0		3.2	96.8	0	0		100	0	0	0		0	0	0	0		
PHF	.000	.900	.650	.000	.932	.667	.931	.000	.000	.942	.250	.000	.000	.000	.250	.000	.000	.000	.000	.000	.966
Cars	0	368	25	0	393	21	720	0	0	741	1	0	0	0	1	0	0	0	0	0	1135
% Cars	0	88.9	96.2	0	89.3	87.5	97.7	0	0	97.4	100	0	0	0	100	0	0	0	0	0	94.4
Buses	0	34	0	0	34	3	10	0	0	13	0	0	0	0	0	0	0	0	0	0	47
% Buses	0	8.2	0	0	7.7	12.5	1.4	0	0	1.7	0	0	0	0	0	0	0	0	0	0	3.9
Trucks	0	12	1	0	13	0	7	0	0	7	0	0	0	0	0	0	0	0	0	0	20
% Trucks	0	2.9	3.8	0	3.0	0	0.9	0	0	0.9	0	0	0	0	0	0	0	0	0	0	1.7

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Middle_Access_Drive_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Bicycles on Road

		S	Second A	ve			S	econd A		Timed Bio	,, 0.00 0.		e Acces	s Drive							
			Eastbou	nd			V	Vestbou	nd			N	lorthbou	nd			So	outhbou	ınd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %																					

		S	econd Av	/e			S	econd Av	/e			Middle	e Access	Drive							
		[Eastboun	d			V	Vestboun	ıd			N	lorthbour	ıd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30) AM to 08	:15 AM - P	eak 1 of 1	1																
Peak Hour for Entire	Intersectio	n Begins a	at 07:30 AN	Л																	
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Middle_Access_Drive_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Pedestrians

		S	Second A	Ave			S	econd A					e Acces	s Drive							
			Eastbou	nd			V	Vestbou	nd			N	lorthbou	nd			S	Southbou	ınd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
08:00 AM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
Grand Total	0	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	3
Apprch %	0	0	0	0		0	0	0	100		0	0	0	0		0	0	0	0		[
Total %	0	0	0	0	0	0	0	0	100	100	0	0	0	0	0	0	0	0	0	0	[

		S	Second A	ve			S	econd Av	/e			Middle	e Access	Drive							
			Eastbour	nd			V	Vestboun	d			N	lorthboun	ıd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30	AM to 08	:15 AM - F	eak 1 of 1	1																
Peak Hour for Entire	Intersection	n Begins a	at 07:30 Af	M																	
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
% App. Total	0	0	0	0		0	0	0	100		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.250

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Middle_Access_Drive_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Cars - Buses - Trucks

		S	Second A	ve			S	econd A		nica Cars	Buooc	Middle	Access	s Drive							
		I	Eastbour	nd			V	Vestbour	nd			N	orthbour	nd			So	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	245	2	0	247	1	98	0	0	99	9	0	2	0	11	0	0	0	0	0	357
04:15 PM	0	307	3	0	310	2	67	0	0	69	4	0	1	0	5	0	0	0	0	0	384
04:30 PM	0	282	3	0	285	2	90	0	0	92	5	0	2	0	7	0	0	0	0	0	384
04:45 PM	0	277	2	0	279	2	105	0	0	107	4	0	1	0	5	0	0	0	0	0	391
Total	0	1111	10	0	1121	7	360	0	0	367	22	0	6	0	28	0	0	0	0	0	1516
05:00 PM	0	133	1	٥	134	2	92	0	0	94	7	0	3	0	10	0	0	0	0	0	238
05:00 PM	0	143	2	0	145	1	78	0	0	79	7	0	2	0	9	0	0	0	0	0	233
05:30 PM	0	142	3	0	145	'n	109	0	0	109	2	0	3	0	5	0	0	0	0	0	259
05:45 PM	0	156	1	0	157	1	84	0	0	85	2	0	2	0	4	0	0	0	0	0	246
Total	0	574	7	0	581	4	363	0	0	367	18	0	10	0	28	0	0	0	0	0	
06:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	1685	17	0	1702	11	723	0	0	734	40	0	16	0	56	0	0	0	0	0	2492
Apprch %	0	99	1	0		1.5	98.5	0	0		71.4	0	28.6	0		0	0	0	0		
Total %	0	67.6	0.7	0	68.3	0.4	29	0	0	29.5	1.6	0	0.6	0	2.2	0	0	0	0	0	
Cars	0	1646	15	0	1661	8	694	0	0	702	39	0	16	0	55	0	0	0	0	0	2418
% Cars	0	97.7	88.2	0	97.6	72.7	96	0	0	95.6	97.5	0	100	0	98.2	0	0	0	0	0	97
Buses	0	35	1	0	36	3	26	0	0	29	0	0	0	0	0	0	0	0	0	0	65
% Buses	0	2.1	5.9	0	2.1	27.3	3.6	0	0	4	0	0	0	0	0	0	0	0	0	0	2.6
Trucks	0	4	1	0	5	0	3	0	0	3	1	0	0	0	1	0	0	0	0	0	9
% Trucks	0	0.2	5.9	0	0.3	0	0.4	0	0	0.4	2.5	0	0	0	1.8	0	0	0	0	0	0.4

		_	econd Av				_	econd Av					e Access					4.1			
			<u>Eastboun</u>	<u>d</u>				/estboun	ıd			N	lorthbour	ıd			S	outhbour	<u>nd</u>		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis F	From 04:00	PM to 06:	00 PM - P																		
Peak Hour for Entire	Peak Hour for Entire Intersection Begins at 04:00 PM																				
04:00 PM	0	245	2	0	247	1	98	0	0	99	9	0	2	0	11	0	0	0	0	0	357
04:15 PM	0	307	3	0	310	2	67	0	0	69	4	0	1	0	5	0	0	0	0	0	384
04:30 PM	0	282	3	0	285	2	90	0	0	92	5	0	2	0	7	0	0	0	0	0	384
04:45 PM	0	277	2	0	279	2	105	0	0	107	4	0	11	0	5	0	0	0	0	0	391
Total Volume	0	1111	10	0	1121	7	360	0	0	367	22	0	6	0	28	0	0	0	0	0	1516
% App. Total	0	99.1	0.9	0		1.9	98.1	0	0		78.6	0	21.4	0		0	0	0	0		
PHF	.000	.905	.833	.000	.904	.875	.857	.000	.000	.857	.611	.000	.750	.000	.636	.000	.000	.000	.000	.000	.969
Cars	0	1087	9	0	1096	5	337	0	0	342	22	0	6	0	28	0	0	0	0	0	1466
% Cars	0	97.8	90.0	0	97.8	71.4	93.6	0	0	93.2	100	0	100	0	100	0	0	0	0	0	96.7
Buses	0	21	0	0	21	2	20	0	0	22	0	0	0	0	0	0	0	0	0	0	43
% Buses	0	1.9	0	0	1.9	28.6	5.6	0	0	6.0	0	0	0	0	0	0	0	0	0	0	2.8
Trucks	0	3	1	0	4	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	7
% Trucks	0	0.3	10.0	0	0.4	0	8.0	0	0	0.8	0	0	0	0	0	0	0	0	0	0	0.5

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Middle_Access_Drive_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Bicycles on Road

		S	econd A	ve			S	econd A			,		e Acces	s Drive							
		E	astbour	nd			V	Vestbour	nd			N	lorthbou	nd			S	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
06:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Apprch %	0	0	100	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %	0	0	100	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

		5	Second A	ve				Second A	ve			Midd	e Access	Drive							
			Eastboun	d			1	Westbour	nd			1	Northbour	nd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:00	PM to 04	:45 PM - P	eak 1 of 1																	
Peak Hour for Entire	Intersectio	n Begins a	at 04:00 PN	Л																	
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mapp. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Middle_Access_Drive_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Pedestrians

		S	econd A	ve			S	econd A					e Acces	s Drive							
		E	astbour	nd			V	Vestbour	nd			Ŋ	orthbou	nd			S	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
04:15 PM	0	0	0	1	1	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	4
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
Total	0	0	0	1	1	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	8
05:00 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
05:15 PM	0	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	3
05:30 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
05:45 PM	0	0	00	0	0	0	0	0	1_	1	0	0	0	0	0	0	0	0	0	0	1_
Total	0	0	0	0	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	6
06:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	1	1	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0	14
Apprch %	0	0	0	100		0	0	0	100		0	0	0	0		0	0	0	0		
Total %	0	0	0	7.1	7.1	0	0	0	92.9	92.9	0	0	0	0	0	0	0	0	0	0	

		5	Second Av	/e				Second A	ve			Middl	e Access	Drive							
			Eastboun	d			1	Westbour	nd			N	Northbour	nd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:00	PM to 04	:45 PM - P	eak 1 of 1	1																
Peak Hour for Entire	Intersectio	n Begins a	at 04:00 PN	Л																	
04:00 PM	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
04:15 PM	0	0	0	1	1	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	4
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
Total Volume	0	0	0	1	1	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	8
% App. Total	0	0	0	100		0	0	0	100		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.250	.250	.000	.000	.000	.583	.583	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Western_Drive_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Lights - Buses - Trucks

		S	Second A	ve			S	econd A		eu- Ligitis	- Duses		stern Ac	cess							
		I	Eastbour	nd			V	/estbour	nd			N	orthbou	nd			S	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	118	28	0	146	11	134	0	0	145	0	0	1	0	1	0	0	0	0	0	292
07:15 AM	0	107	18	0	125	9	139	0	0	148	2	0	0	0	2	0	0	0	0	0	275
07:30 AM	0	113	15	0	128	10	155	0	0	165	0	0	1	0	1	0	0	0	0	0	294
07:45 AM	0	105	20	0	125	11	189	0	0	200	1	0	1	0	2	0	0	0	0	0	327
Total	0	443	81	0	524	41	617	0	0	658	3	0	3	0	6	0	0	0	0	0	1188
08:00 AM	0	105	31	0	136	15	180	0	0	195	3	0	0	0	3	0	0	0	0	0	334
08:15 AM	0	106	31	0	137	15	165	0	0	180	2	0	1	0	3	0	0	0	0	0	320
08:30 AM	0	90	28	0	118	17	129	0	0	146	1	0	2	0	3	0	0	0	0	0	267
08:45 AM	0	101	29	0	130	8	123	0	0	131	0	0	1_	0	1	0	0	0	0	0	262
Total	0	402	119	0	521	55	597	0	0	652	6	0	4	0	10	0	0	0	0	0	1183
09:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	845	200	0	1045	96	1214	0	0	1310	9	0	7	0	16	0	0	0	0	0	2371
Apprch %	0	80.9	19.1	0		7.3	92.7	0	0		56.2	0	43.8	0		0	0	0	0		[
Total %	0	35.6	8.4	0	44.1	4	51.2	0	0	55.3	0.4	0	0.3	0	0.7	0	0	0	0	0	
Lights	0	758	196	0	954	95	1170	0	0	1265	9	0	7	0	16	0	0	0	0	0	2235
% Lights	0	89.7	98	0	91.3	99	96.4	0	0	96.6	100	0	100	0	100	0	0	0	0	0	94.3
Buses	0	64	4	0	68	0	22	0	0	22	0	0	0	0	0	0	0	0	0	0	90
% Buses	0	7.6	2	0	6.5	0	1.8	0	0	1.7	0	0	0	0	0	0	0	0	0	0	3.8
Trucks	0	23	0	0	23	1	22	0	0	23	0	0	0	0	0	0	0	0	0	0	46
% Trucks	0	2.7	0	0	2.2	1	1.8	0	0	1.8	0	0	0	0	0	0	0	0	0	0	1.9

		S	econd A	ve			S	econd Av	/e			Wes	stern Acc	ess							
		_	Eastboun				_	Vestboun					orthboun				S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds /	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis																					
Peak Hour for Entire	Intersection	n Begins a	t 07:30 AN	Л																	
07:30 AM	0	113	15	0	128	10	155	0	0	165	0	0	1	0	1	0	0	0	0	0	294
07:45 AM	0	105	20	0	125	11	189	0	0	200	1	0	1	0	2	0	0	0	0	0	327
08:00 AM	0	105	31	0	136	15	180	0	0	195	3	0	0	0	3	0	0	0	0	0	334
08:15 AM	0	106	31	0	137	15	165	0	0	180	2	0	1	0	3	0	0	0	0	0	320
Total Volume	0	429	97	0	526	51	689	0	0	740	6	0	3	0	9	0	0	0	0	0	1275
% App. Total	0	81.6	18.4	0		6.9	93.1	0	0		66.7	0	33.3	0		0	0	0	0		
PHF	.000	.949	.782	.000	.960	.850	.911	.000	.000	.925	.500	.000	.750	.000	.750	.000	.000	.000	.000	.000	.954
Lights	0	383	95	0	478	51	665	0	0	716	6	0	3	0	9	0	0	0	0	0	1203
% Lights	0	89.3	97.9	0	90.9	100	96.5	0	0	96.8	100	0	100	0	100	0	0	0	0	0	94.4
Buses	0	35	2	0	37	0	12	0	0	12	0	0	0	0	0	0	0	0	0	0	49
% Buses	0	8.2	2.1	0	7.0	0	1.7	0	0	1.6	0	0	0	0	0	0	0	0	0	0	3.8
Trucks	0	11	0	0	11	0	12	0	0	12	0	0	0	0	0	0	0	0	0	0	23
% Trucks	0	2.6	0	0	2.1	0	17	0	0	1.6	0	0	0	0	0	0	0	0	0	0	1.8

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Western_Drive_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Bicycles on Road

		S	econd A	ve			S	econd A			,		stern Ac	cess							
		E	astbour	nd			V	/estbour	nd			N	orthbou	nd			So	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1					1																
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00 00 444	•	•		•	0	•	•	•	•	ا م						•	•				
09:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch % Total %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		

		S	Second Av	ve				Second A	ve			We	stern Acc	cess							
			Eastboun	d			1	Westbour	nd			1	Northbour	nd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30	AM to 08	:15 AM - P	eak 1 of 1																	
Peak Hour for Entire	Intersectio	n Begins a	at 07:30 AN	Λ																	
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Western_Drive_AM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Pedestrians

		S	econd A	ve			S	econd A					stern Ac	cess							
		E	astbour	nd			V	Vestbour	nd			N	lorthbou	nd			S	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch % Total %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		

			Second Av					Second A					stern Acc								
			<u>Eastboun</u>	d			1	Westbour	nd			1	Northbour	nd			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:30) AM to 08	3:15 AM - P	eak 1 of 1																	
Peak Hour for Entire	Intersectio	n Begins	at 07:30 AN	1																	
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Western_Drive_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Lights - Buses - Trucks

										itea- Lignis	- buses										1
		S	Second A	ve			S	econd A	ve			Wes	stern Ac	cess							
			Eastbou	nd			V	Vestbou	nd			N	orthboui	nd			S	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	275	6	0	281	1	86	0	0	87	32	0	8	0	40	0	0	0	0	0	408
04:15 PM	0	274	15	0	289	0	82	0	0	82	23	0	11	0	34	0	0	0	0	0	405
04:30 PM	0	265	18	0	283	1	103	0	0	104	30	0	10	0	40	0	0	0	0	0	427
04:45 PM	0	291	10	0	301	0	93	0	0	93	25	0	3	0	28	0	0	0	0	0	422
Total	0	1105	49	0	1154	2	364	0	0	366	110	0	32	0	142	0	0	0	0	0	1662
					1																
05:00 PM	0	248	9	0	257	1	100	0	0	101	21	0	11	0	32	0	0	0	0	0	390
05:15 PM	0	290	13	0	303	0	93	0	0	93	16	0	5	0	21	0	0	0	0	0	417
05:30 PM	0	263	4	0	267	0	87	0	0	87	11	0	6	0	17	0	0	0	0	0	371
05:45 PM	0	194	5	0	199	0	118	0	0	118	8	0	2	0	10	0	0	0	0	0	327
Total	0	995	31	0	1026	1	398	0	0	399	56	0	24	0	80	0	0	0	0	0	1505
	_			_	1	_		_	_	1		_		_	1	_	_	_	_	_	
Grand Total	0	2100	80	0	2180	3	762	0	0	765	166	0	56	0	222	0	0	0	0	0	3167
Apprch %	0	96.3	3.7	0		0.4	99.6	0	0		74.8	0	25.2	0		0	0	0	0		
Total %	0	66.3	2.5	0	68.8	0.1	24.1	0	0	24.2	5.2	0	1.8	0	7	00	0	0	0	0	
Lights	0	2041	76	0	2117	3	732	0	0	735	165	0	55	0	220	0	0	0	0	0	3072
% Lights	0	97.2	95	0	97.1	100	96.1	0	0	96.1	99.4	0	98.2	0	99.1	0	0	0	0	0	97
Buses	0	47	4	0	51	0	23	0	0	23	1	0	0	0	1	0	0	0	0	0	75
% Buses	0	2.2	5	0	2.3	0	3	0	0	3	0.6	0	0	0	0.5	0	0	0	0	0	2.4
Trucks	0	12	0	0	12	0	7	0	0	7	0	0	1	0	1	0	0	0	0	0	20
% Trucks	0	0.6	0	0	0.6	0	0.9	0	0	0.9	0	0	1.8	0	0.5	0	0	0	0	0	0.6

		_	econd Av				_	econd Av					stern Acc								
		E	astboun	d			V	<u>Vestboun</u>	d			N	orthboun	ıd			S	outhbour	ıd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis I	From 04:00	PM to 05:	45 PM - P	eak 1 of 1																	
Peak Hour for Entire	Intersection	Begins a	t 04:00 PN	1																	
04:00 PM	0	275	6	0	281	1	86	0	0	87	32	0	8	0	40	0	0	0	0	0	408
04:15 PM	0	274	15	0	289	0	82	0	0	82	23	0	11	0	34	0	0	0	0	0	405
04:30 PM	0	265	18	0	283	1	103	0	0	104	30	0	10	0	40	0	0	0	0	0	427
04:45 PM	0	291	10	0	301	0	93	0	0	93	25	0	3	0	28	0	0	0	0	0	422
Total Volume	0	1105	49	0	1154	2	364	0	0	366	110	0	32	0	142	0	0	0	0	0	1662
% App. Total	0	95.8	4.2	0		0.5	99.5	0	0		77.5	0	22.5	0		0	0	0	0		
PHF	.000	.949	.681	.000	.958	.500	.883	.000	.000	.880	.859	.000	.727	.000	.888	.000	.000	.000	.000	.000	.973
Lights	0	1078	47	0	1125	2	345	0	0	347	109	0	32	0	141	0	0	0	0	0	1613
% Lights	0	97.6	95.9	0	97.5	100	94.8	0	0	94.8	99.1	0	100	0	99.3	0	0	0	0	0	97.1
Buses	0	22	2	0	24	0	16	0	0	16	1	0	0	0	1	0	0	0	0	0	41
% Buses	0	2.0	4.1	0	2.1	0	4.4	0	0	4.4	0.9	0	0	0	0.7	0	0	0	0	0	2.5
Trucks	0	5	0	0	5	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	8
% Trucks	0	0.5	0	0	0.4	0	0.8	0	0	0.8	0	0	0	0	0	0	0	0	0	0	0.5

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Western_Drive_PM

Site Code:

Start Date : 11/13/2018

Page No : 1

Groups Printed- Bicycles on Road

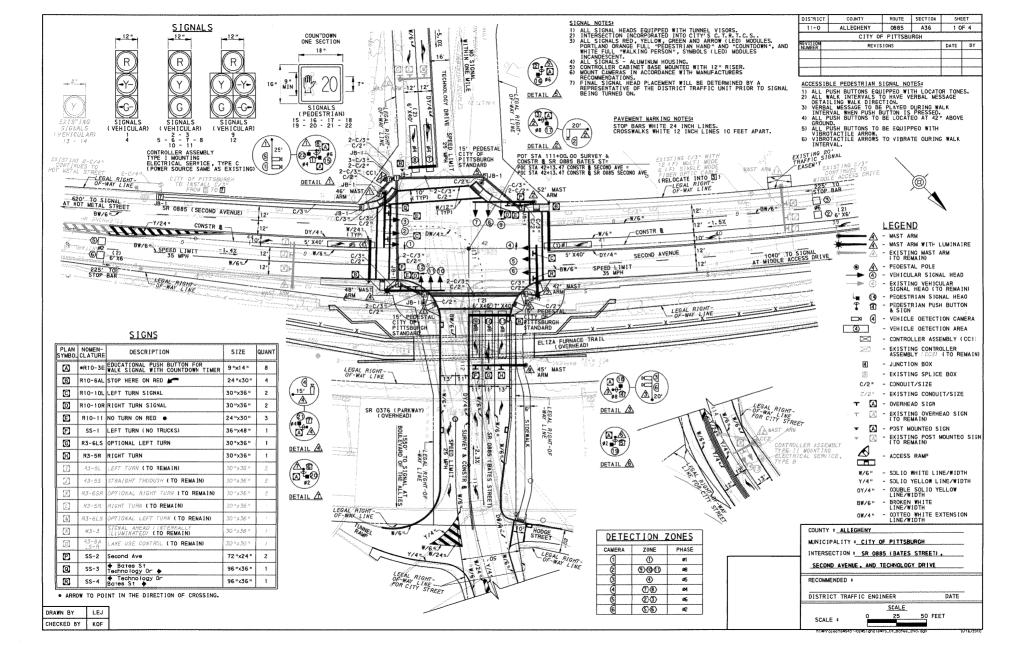
		S	Second A	ve			S	econd A		TITICO BIO	y 0.00 011		stern Ac	cess							
			Eastbou	nd			V	/estbou	nd			N	lorthbou	nd			Sc	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					0																1
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %																					

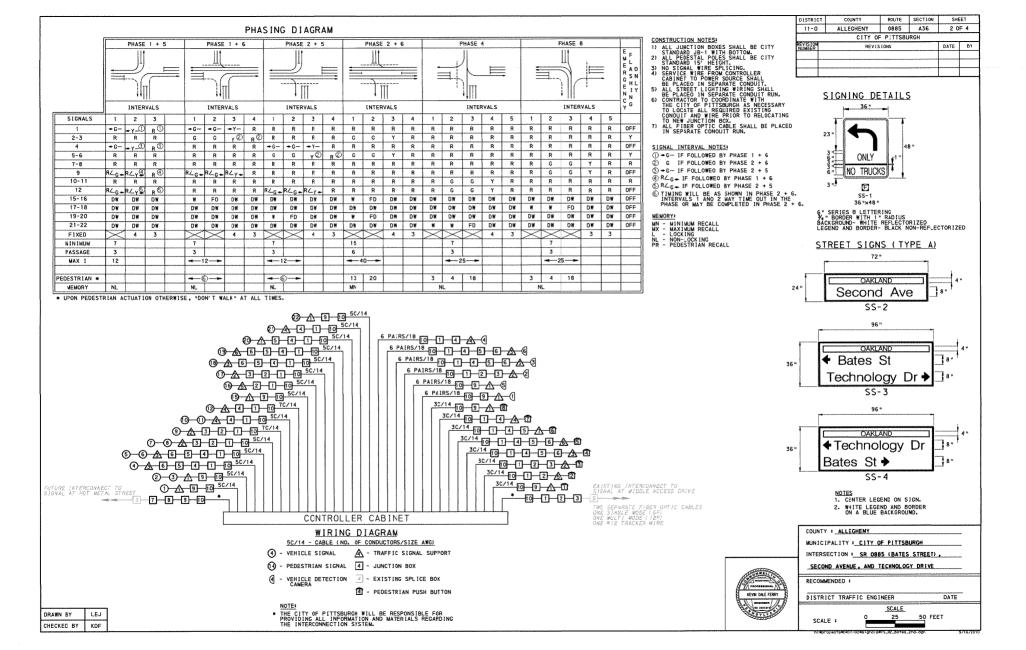
		S	Second A	ve			S	econd Av	/e			Wes	stern Acc	ess							
			Eastbour	nd			V	Vestboun	d			N	orthboun	d			S	outhbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:00	PM to 05	:45 PM - P	eak 1 of 1	1																
Peak Hour for Entire	Intersection	n Begins a	at 04:00 Pf	M																	
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

333 Baldwin Ave Pittsburgh, PA 15205

File Name: Second_Ave_and_Western_Drive_PM

Site Code:


Start Date : 11/13/2018


Page No : 1

Groups Printed- Pedestrians

		S	Second A	Ave			S	econd A					stern Ac	cess							
			Eastbou	nd			V	Vestbou	nd			N	lorthbou	nd			S	Southbou	ınd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2
Grand Total	0	0	0	1	1	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	4
Apprch %	0	0	0	100		0	0	0	100		0	0	0	0		0	0	0	0		[
Total %	0	0	0	25	25	0	0	0	75	75	0	0	0	0	0	0	0	0	0	0	[

		S	Second A	ve			S	econd Av	/e			Wes	stern Acc	ess							
			Eastbour	nd			V	Vestboun	d			N	orthboun	d			S	Southbour	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:00	PM to 04	:45 PM - P	eak 1 of '	1																
Peak Hour for Entire	Intersection	n Begins a	at 04:00 PI	M																	
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Total Volume	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
% App. Total	0	0	0	0		0	0	0	100		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.250

DISTRICT	COUNTY	ROUTE	SECTION	SHE	ET
11-0	ALLEGHENY	0885	A36	3 0	F 4
	CITY OF	PITTSB	JRGH		
EVISION NUMBER	REVIS	IONS	***************************************	DATE	BY

TRAFFIC SIGNAL TABULATION

								1	MAST ARM PEI											DESTA	٩L														
TRUCT	1 TEM								T						M, "A"										м, "В "					1	RM "	Ç"	Ş	HAFT	
UMBER	UNIT	DESCRIPTION	QUANT	ROUTE	STATION	SID	OFFSE	Н	К	Ł			L LO	OCATION O P	R	IGN L		ION	w	L	SI-		LOCA	TION			LOCAT	ION	w	L	Х	z	н	м	N
Δ	9951 2146 EACH	TRAFFIC SIGNAL SUPPORT, 46' MAST ARM (30' MOUNTING HEIGHT)	1	SECONO AVE	42+85.0	RT	47.5	17.0	10.0	0146.	0′43	5.5134	. 012	22.5	39.0	16.5	10.	51	0°											25.0	30.0	0°			
A	2152	TRAFFIC SIGNAL SUPPORT, 52' MAST ARM (30' MOUNTING HEIGHT)	1	SECONO AVE	41+56.0	RT	39.0	17.0	10.0	52.	0150	0.0139	. 012	28. 0	22.0	16.5	11.	0	269°											20.0	30. 0	269°			
<u>**</u>	9951 2142 EACH	TRAFFIC SIGNAL SUPPORT, 42' MAST ARM WITH LUMINAIRE ARM (35' MOUNTING HEIGHT)	1	SECONO AVE	41+55.0	LT	40.5	17.0	10.0	0142.	0'39	5 30	. 01	18.5	35.0	13.5	1		0°						1					20.0°		 		\top	
** A	9951 2148 EACH	TRAFFIC SIGNAL SUPPORT, 48' MAST ARM WITH LUMINAIRE ARM (35' MOUNTING HEIGHT)	1	SR 0885 (BATES ST)	111+36.0	RT	69.5	17.0	10.0	48.	0'45	. 0137	. 012	29. 0	24.0	17.5	11.	0	0°							<u> </u>	1			15.0	30.0	0°			
Æ	9951 4015 EACH	TRAFFIC SIGNAL SUPPORT, 15' PEDESTAL, CITY OF PITTSBURGH STANDARD	1	SECOND AVE	42+02.5	RT	56.0																										15. 0	1	10,0
Æ	9951 4015 EACH	TRAFFIC SIGNAL SUPPORT, 15' PEDESTAL, CITY OF PITTSBURGH STANDARD	1	SR 0885 (BATES ST)	111+47.0	LT	48.5						1																				15.01	1	10.0
Δ	9951 4015 EACH	TRAFFIC SIGNAL SUPPORT, 15' PEDESTAL, CITY OF PITTSBURGH STANDARD	1	SR 0885 (BATES ST)	111+47.0	RT	38.0												<u> </u>														15. 01	1	10.0
<u>A</u>	9951 0145 EACH	TRAFFIC SIGNAL SUPPORT, 45' MAST ARM	1	SR 0885 (BATES ST)	111+99.5	LT	49.0	17.0	1	45.	01		7		42.5	31.5	20.	5	0°		<u> </u>	T		T	1	T		1		\Box				\top	

- * REFER TO TRAFFIC STANDARDS SIGNALS, TC-7800 SERIES FOR LETTER DESIGNATIONS.

 ** PROVICE AN ADDITIONAL 2" CONDUIT FOR LIGHTING IN THE TRAFFIC SIGNAL SUPPORT FOUNDATIONS AT NO ADDITIONAL COST. SEE THE HIGHWAY LIGHTING MODIFICATIONS PLAN FOR ADDITIONAL DETAILED INSTRUCTION.

1 TEM				VIDEO	CAMERA				
NUMBER UNIT	DESCRIPTION	CAM NO	QUANT	SIZE	LOCATION	OPERATION	ROUTE	STATION	SIDE
4956 0700 EACH	VIDEO DETECTOR MODIFIED	06	2	5' x40' (2) 6' x6'	Δ	PRESENCE	SECOND AVE	42+85.0	RT
4956 0700 EACH	VIDEO DETECTOR MODIFIED	2	1	7' ×40' (2) 6' ×40'	A	PRESENCE	SECOND AVE	41+56.0	RT
4956 0700 EACH	VIDEO DETECTOR MODIFIED	36	2	5' x40' (2) 6' x6'	Æ.	PRESENCE	SECOND AVE	41+55.0	LT
4956 0700 EACH	VIDEO DETECTOR MODIFIED	4	1	(2) 6'×40'	A	PRESENCE	SR 0885 (BATES ST)	111+36.0	RT
	TDTAL		6						

TABULATION OF THE PAVEMENT MARKINGS CAN BE FOUND ON THE SIGNING AND PAVEMENT MARKING PLAN.

TRENCH, CONDUIT, JUNCTION BOX, ELECTRICAL ITEMS

DESCRIPTION		CITY STANDARD CONCRETE JUNCTION BOX JB-1	2 INCH CONDUIT MODIFIED	3 INCH CONOUIT MODIFIED	TRENCH AND BACKFILL,	TRENCH AND BACKFILL, TYPE II	TRENCH AND BACKFILL, TYPE IV MODIFIED	SIGNAL CABLE, 14 AWG, 3 CONDUCTOR	SIGNAL CABLE, 14 AWG, 5 CONDUCTOR	SIGNAL CABLE, 14 AWG, 7 CONDUCTOR	
NUMBER UNITED	GGG	9000 0103 EACH	4954 0012 LF	4954 0013 LF	0954 0151 LF	0954 0152 LF	4954 0154 LF	0954 0201 LF	0202	0954 0203	
СС1 ТО 10		1	14	21	7						
10 TO 1		1	7	14	7						
1 TO 2		1	75	150	22		53				
1 TO 4		1	91	182	17		74				
2 TO 3		1	86	43	36	7					
4 TO 5		1	24	48	24						
5 TO 8		1	87	174	87						
10 TO 9		1	16	32	16					1	
9 TO 8		1		20	16	4					
8 TO 7		1		171		171					
9 то 🛆			5	5	5						
3 TO <u>2</u> 2			 13	13	 13						
6 TO <u>₹</u>			11	11	11						
4 TO 🛦			 12	12	12			 			
2 TO <u>\$</u>			 7		 7					ļ	
6 70 <u>€</u>			 9		9						
5 TO A			 8		8			 			
ENTIRE INTERSECTION								 1179	2487	390	
TOTALS		10	 465	896	 297	182	127	1179	2487	390	

1 TEM NUMBER		MISCE	LL ANEOUS	
UNIT	DESCRIPTION	QUANTITY	LOCATION	REMARKS
9000 0100 EACH	CONTROLLER ASSEMBLY, MICROCOMPUTER MODEL 170 MASTER CONTROLLER LOCATION	1	CC1	BASE-MOUNT, TYPE 332, WITH 12" RISER
9000 0101 EACH	MICROCOMPUTER MODEL 170 MASTER CONTROLLER WITH SOFTWARE	1	CC1	
4954 0403 EACH	ELECTRICAL SERVICE, TYPE C MODIFIED	1	CC1	
4955 3203 EACH	VEHICULAR SIGNAL HEAD, THREE 12" SECTIONS (LED) MODIFIED	10	0234967860	RED, YELLOW, GREEN, AND ARROWS (LED MODULES)
4955 3205 EACH	VEHICULAR SIGNAL HEAD, FIVE 12" SECTIONS (LED) MODIFIED	2	90	RED, YELLOW, GREEN, AND ARROWS (LED MODULES)
9955 3721 EACH	PEDESTRIAN SIGNAL HEAD WITH COUNTDOWN (LED)	8	B60B9902	FULL HAND/MAN AND COUNTDOWN (LED MODULES) INCANDESCENT
9956 0500 EACH	AUDIBLE PEDESTRIAN PUSH BUTTON ASSEMBLY	8	000000000000000000000000000000000000000	ADA TYPE BUTTON

DISTRICT	COUNTY	ROUTE	SECT10N	SHE	ET
11-0	ALLEGHENY	0885	A36	4 0	= 4
	CITY O	PITTSBI	JRGH	-	
REVISION NUMBER	REVIS	10NS		DATE	BY

SIGNS

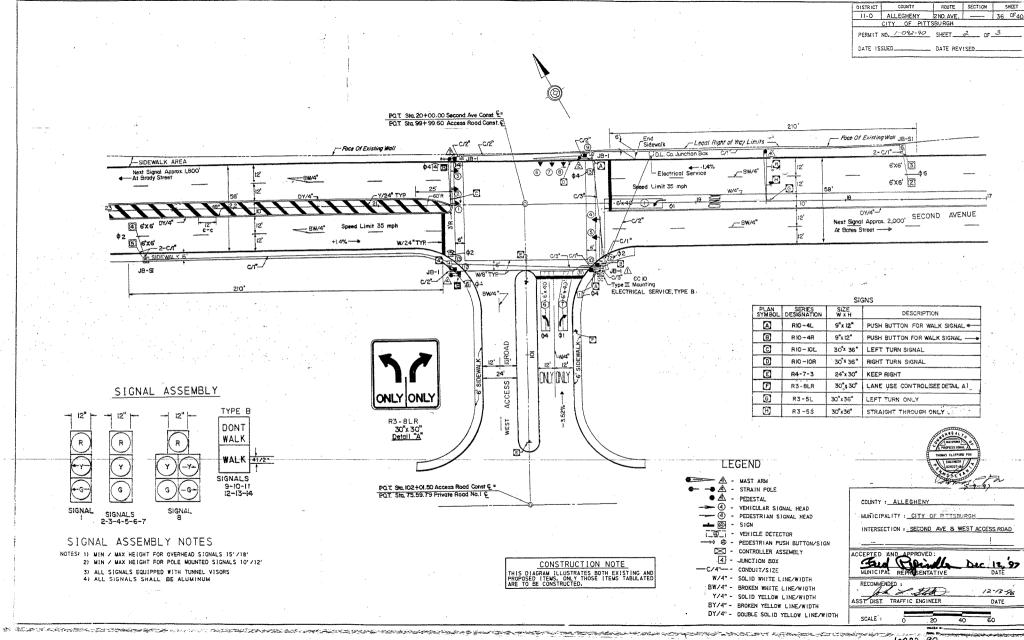
PLAN SYMBOL	NOMEN- CLATURE	DESCRIPTION	SIZE	SF EACH	QUANTITY	4931 POST MOUNTED 0001 SIGNS, TYPE B MODIFIED	0936 STRUCTURE MOUNTED 0200 FLAT SHEET ALUMINUM SIGNS	9000 STREET NAME SIGNS 0102 WITH BRACKETS SF	REMARKS
Δ	*R10-3E	EDUCATIONAL PUSH BUTTON FOR WALK SIGNAL WITH COUNTDOWN	9"×14"	0.88	8	_			 SIGNAL SUPPORT MOUNTED PEDESTAL SUPPORT MOUNTED
8	R10-6AL	STOP HERE ON RED	24"x30"	5.00	4	20.00			POST MOUNTED
©	R10-10L	LEFT TURN SIGNAL	30"x36"	7.50	2		15.00		MAST ARM MOUNTED
0	R10-10R	RIGHT TURN SIGNAL	30"x36"	7.50	2		15.00		MAST ARM MOUNTED
E	R10-11	NO TURN ON RED .	24"x30"	5.00	3		15.00		MAST ARM MOUNTED
Ē	SS-1	LEFT TURN (NO TRUCKS)	36 "x48 "	12.00	1		12.00		MAST ARM MOUNTED
0	R3-6LS	OPTIONAL LEFT TURN	30 "x36 "	7.50	1		7.50		MAST ARM MOUNTED
Ð	R3-5R	RIGHT TURN	30"x36"	7.50	1		7.50		MAST ARM MOUNTED
P	\$S-2	Second Ave	72 "x24 "	12.00	2			24.00	MAST ARM MOUNTED
Q	SS~3	♦ Bates St Technology Dr ♦	96 "x36 "	24.00	1			24.00	MAST ARM MOUNTED
R	55-4	◆ Technology Or Bates St ◆	96 "×36 "	24.00	1			24.00	MAST ARM MOUNTED
		TOTALS				20,00	72.00	72.00	

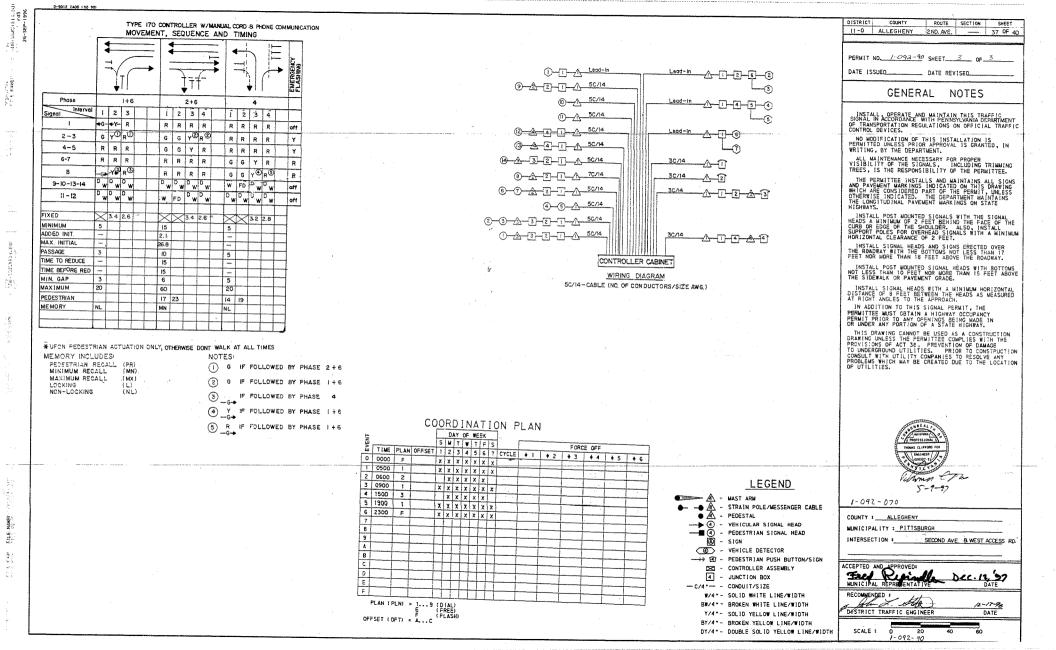
- ▲ INCIDENTAL TO PEDESTRIAN PUSH BUTTON ITEM NUMBER 9956-0500
- * ARROW TO POINT IN THE DIRECTION OF THE CROSSING.

TRAFFIC SIGNAL TABULATION SR 0885 (BATES STREET), SECOND AVE, AND TECHNOLOGY DRIVE


```
TS: 64 DATE: 03/27/13
INTERSECTION | : BATES | SECOND
                                                         MODEM
FLASH YELLOW | : SECOND
                                                                 SITE CODE
                                                                            SOK
MS. LOCATION : NONE
                                                                          409
                                                         TRACT #
TYPE OPERATE : FULL ACTUATED TOTAL UNITS: 20 IN CDBG AREA:
MAN. NAME & # : SAFETRAN 170E POLE UNITS: 8 SYSTEM # :
                                     POLE UNITS: 8 SYSTEM # :
SOFTWARE PROG.: 170 WAPITI 41KS
                                      MAST UNITS: 12 SYSTEM TYPE :
                                       SPAN UNITS: 0 NUMBER SPLITS:
                                                                           0
                                                         WORK ORDER # : 10579
                               LEDS
LAST P.M.C. : 08/18/12
LAST P.M.LOW : 10/05/04
                                        LAMP
                                               PAR
                           LEDS
8 12
RED : 0 12
                                                LED LAMP COMP. DATE :11/11/11
                                         8 12
                                 8 12
                                               0 0
                                                         PAGES USED
                                                                      .
LAST P.M.HIGH : 04/04/06
                                        0 0
YEL :0 10 0 0 0 0 # RADAR DET :

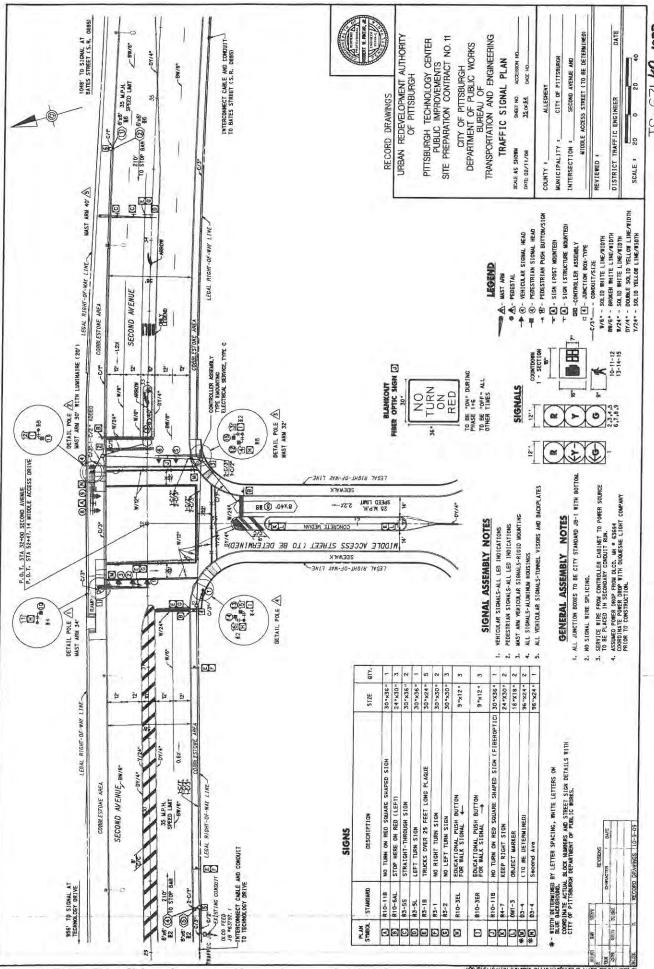
SERVICE 1: 03/26/13 298, GRN :0 10 0 0 0 0 # CAMERAS :

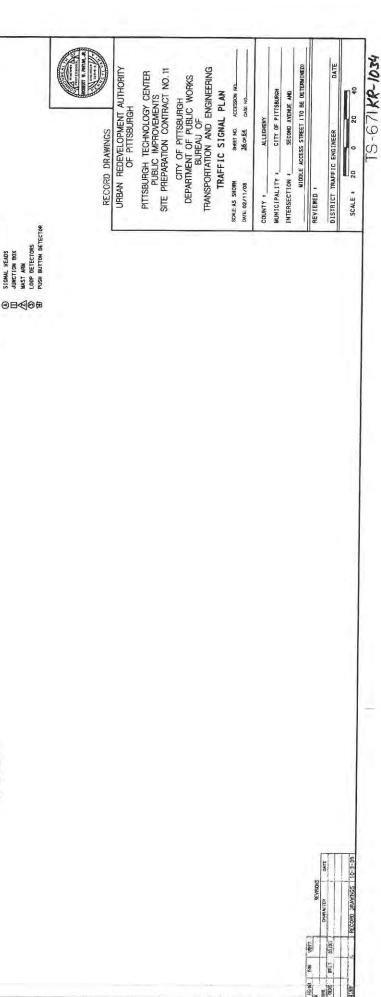

SERVICE 2: 03/15/13 200, YEL>:0 4 0 0 0 0 # DETECTOR LOOPS:


SERVICE 3: 03/01/13 308, GRN>:0 6 0 0 0 # PED BUTTONS :

SERVICE 4: 02/24/13 284, DW :0 0 0 0 CD/WD # AUDIBLE PEDS :

SERVICE 5: 02/04/13 284, WK :0 0 0 0 8 # FIB.OPTIC SIGN:
                                                           TERRITORY
                                                                        : 4310
             : 24 HR STOP & GO
FLASH TIME
REVISION DATE : 03/26/13 ORIGINAL INSTALLATION :11/11/11 LED TYPE
             : Power Contracting responsible during construction 5-9-11
REMARKS
             : MAX 2 14:30 - 18:30 MON-FRI
                                                    OFFSETS
                                              1.
                                                               4.
                    LENGTH
                                                    2. 3.
        CYCLE
                                                          0
                                              0
                                                    0
                                                                0
                      0
           A
                                              0
                                                    0
                                                         0
                                                                0
                       0
           B
                                              0
                                                    0
                                                         0
                                                               0
                       0
           C
                                                   AT C:\TV\NONCBD\INT3
TS # 64 : BATES
                  SECOND
                      key
 (0 + \text{key})
                                                (phase + key)
                        key
FUNCTION 15
                                                                  82
                                                                             8
                                              26 3
                                                        A
               PHASES
FUNCTION
              12345678
                                       20
                                             31 0 25
                                                                  31
                                                                      0
                                                                            30
              2 6 0 MAX I
                                                             15
VEH. RECALL
                                       0
                                             0 0 0
                                                                      0
                                                                           0
                                                             0
                                                                  0
PED. RECALL 0
                       1 MAX II/HFDW
                                        0 11 0 4
0 20 0 18
0 0 0 0
7 15 0 7
              0
                        2 WALK
                                                        4
                                                              0
                                                                  11
                                                                      0
RED LOCK
              0
                                                                      0
                        3 FLASH DW
                                                              0
                                                                 20
                                                                            18
YELLOW LOCK
                                                              0
                                                                 0
                                                                       0
              12 456 8 4 MAX INITIAL
PERMIT
                                                             7
                                                                  15 0
                                                                            7
              2 4 6 8 5 MIN GREEN
PED PHASES
                                        10 10 0
                                                       10
                                                             10
                                                                  10 0
              135 8 6 T B R
LEAD PHASES
                        7 T T R
                                        5 10 0 10
                                                            5
                                                                 10 0
                                                                          10
DOUBLE ENTRY
              0
              0
                        8 OBSERVE GAP
SEQ. TIMING
                      9 PASSAGE
                                       3.0 6.0 0.0 3.0 3.0 6.0 0.0
                                                                           3.0
              2 6
START UP GRN
              0
                                       2.0 3.0 0.0 2.0 2.0 4.0
                                                                     0.0
                                                                          2.0
                       A MIN GAP
OVERLAP A
                      B ADDED/ACT
                                       0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                          0.0
OVERLAP B
              0
                                       3.0 4.0 0.0 3.0 3.0 4.0 0.0 3.0
              0
                        C YELLOW
OVERLAP C
                                       3.0 2.0 0.0 3.0 3.0 2.0 0.0 3.0
                       D RED CLEAR
OVERLAP D
             0
              4 8 E RED REVERT
                                     0.0 0.0 0.0 0.0 0.0 0.0 0.0
EXCLUSIVE
                       F WALK II 0 0 0 3 0
                                                                 0 0 3
             0
SIM. GAP
```


PAGE ID :



INTERSECTION	: SECOND	WEST_AC	CESS_RI).			TS:612	DATE: 0	5/18/98
FLASH YELLOW MS, LOCATION	: SECOND : NONE						POLICE BU	ITTON: T	
TYPE OPERATE	: FULL A	TUATED	5	SYSTEM	1 #: 0		SYSTEM TY	'PE : -	
MAN. NAME & #	: SAFETRA	N 170	TYPE	CONTR	OL: S	. 1	NUMBER SP	LITS: 0	
LAST P.M.C.	: 07/23/9		WORK	ORDER	#:	8788	COMP. DAT	E :04	/28/98
LAST P.M.LOW	: 07/24/9			# 1 7	GHTS :	14	# PHASES	USED	: 3
LAST P.M.HIGH	: 07/30/9	1.7			HD 8 :		# DETECTO		
	: 04/28/9	0 402				200	# PED BUT		: 6
SERVICE 1	: 04/28/9	0 404,		# D	HD 9 :		It I have been to	1 10 1 0 10	
SERVICE 2	: 04/09/3	0 300,			HD12 :		# POLE LI	GHTS	: 6
SERVICE 3	: 02/25/9				PECTS:		# MAST AR		S : 8
SERVICE 4 SERVICE 5	: 11/18/9				POS. :		# SPAN LI		: 0
FLASH TIME REVISION DATE REMARKS	: 24 HR S : 02/22/8	9 ORIGI	NAL IN:	STALLA	: NOIT	1 1	ORIGIN	IAL W.O.	# 0
TS: 612		SAFETR	AN 170						
PHASES		1.	2 -	3.	4.	5.		7.	8.
ACT. BEFORE	ADDING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MINIMUM GREEN		5.0	15.0	0.0	5.0			0.0	0.0
SECONDS PER #		0.0	2.1	0.0	0.0			0.0	0.0
WALK		0.0	17.0	0.0	14.0			0.0	0.0
WALK CLEARANG	E	0.0	23.0	0.0	19.0			0.0	0.0
PASSAGE			10.0	0.0	5.0			0.0	0.0
TIME BEFORE	REDUCING		15.0	0.0	0.0			0.0	0.0
TIME TO REDUC			15.0	0.0	0.0			0.0	0.0
MINIMUM GAP	~ H	3,0	6.0	0.0	5.0			0.0	0.0
MAXIMUM GREEN		20.0	60.0	0.0	20.0			0.0	0.0
MAXIMUM GREEN	1 2	0.0	0.0		0.0			0.0	0.0
YELLOW		4.0	4.0		3.5			0.0	0.0
RED CLEARANCE	<u> </u>	2.0	2.0	0.0	2.5			0.0	0.0
RED REVERT		0.0	0.0	0.0	0.0			0.0	0.0
MAXIMUM INIT	IAL	0.0	27.0	0.0	0.0	0.0	27.0	0.0	0.0

REMARKS:

TS-671 KR 1023

M.(St.

OEDS (MALE)

SC/14 - CABLE (NO. OF CONDUCTORS / ANG SIZE)

MM - MINIMUM RECALL
MX - MAXIMUM RECALL
PR - PEDESTRIAN RECALL
L - LOCKING
NL - NON-LOCKING

MEMORY INCLUDES

* UPON PEDESTRAIN ACTUATION ONLY, OTHERWISE DON'T WALK AT ALL TIMES.

O- 6 IF FOLLOWED BY 2+6

SIGNAL KEADS JUNCTION BOX LEGEND

WHENG DIAGRAM

36/14 金田田春園

\$57.14 \$\frac{\A}{26.714} \frac{\A}{26.714} \frac{\A}{26.714} \frac{\A}{26.714} \frac{\A}{26.714} \frac{\A}{26.714} \frac{\A}{A.77}

35/14

0个中心中心 DA **医企图图** 0000000 图 图 图 图 图 图

30/14

35/14 LEAD-IN LEAD-IN

5C/14

TO TECHNOLOGY DRIVE IC

A.0-2-2-0 AGREDANO.

SC/14 A.D.G

5C/14

50/14 3C/14 5C/14

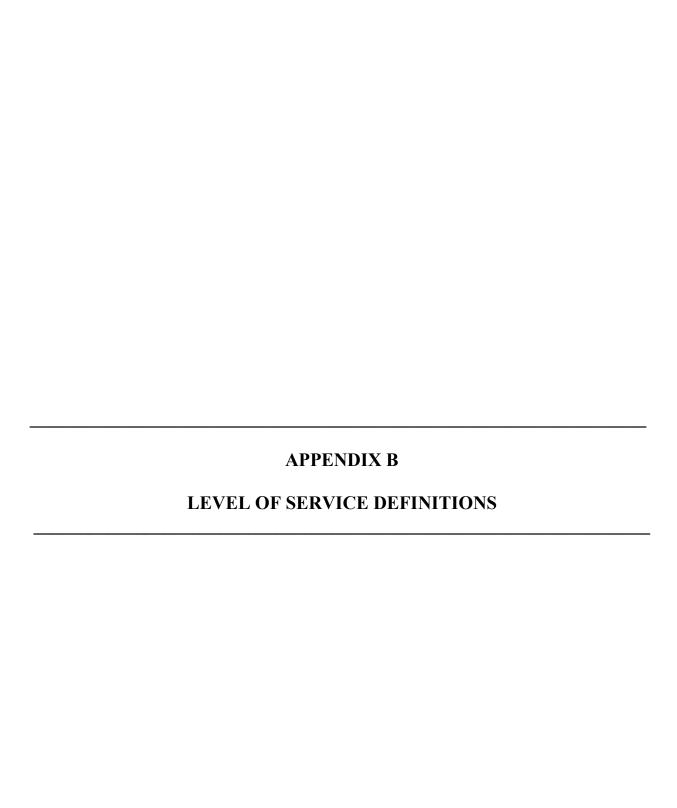
0个中中中40

0 0个日日日

14,15

SIGNAL

PHASE 4+8


PHASE 1+6 PHASE 2+6

IT

PHASING DIAGRAM

0个日本日本 6名中日春

INTERSECTION		ECO		MIDI	LE_A	CCE	SS_	RD				T	S:671	DA:	TE:08/	21/09 F
FLASH YELLOW		ECO	עע										ITE CO		:	
MS. LOCATION	: N	ONE											RACT #			
									****	ma	1 -				:	409 Y
TYPE OPERATE	: F	ULL	AC	TUATE	ED			TOTAL					V CDBC		4 :	
MAN. NAME & #	: S	AFE'	rra	N 170)E			POLE			8		YSTEM		•	0
SOFTWARE PROG	.: 1	70 1	NAP	ITI 4	IKS			MASI			7		YSTEM		:	FOS
								SPAN			0		JMBER			0
LAST P.M.C.	:	/	1				EDS		MP		AR		ORK OF			9967
LAST P.M.LOW	:	1	/			8	12		12				OMP. I			07/09
LAST P.M.HIGH		1	1		RED	:0	9		0	0	0		ONITOR	ID #	# :	
					YEL	:0	8	0	0	0	0	M	DDEM		:	0
SERVICE 1: 02	109/	09	100		GRN	:0	8	0	0	0	0	#	PHASE	S USI	ED :	
CEPUICE 2. 01	107/	09	102	.265	YEL	>:0	1	0	0	0	0	#	DETEC	TOR I	LOOPS:	6
SERVICE 3: 12 SERVICE 4: 11	/18/	08	100	1	GRN:	>:0	1	0	0	0	0	#	PED E	BUTTO	VS :	6
CERVICE 4: 11	125/	08	102	,	DW	: 0	0	0	0	CD	/WD	#	AUDIE	LE PI	EDS :	0
SERVICE 5: 11	120/	08	100	•	WK	:0	0	0	0		5				SIGN:	
SERVICE J. II	/20/	00	100	,	****											
FLASH TIME	: 2	4HR	ST	OP &	GO								TERRI			4309
REVISION DATE	: 0	1/0	7/0	9 OF	RIGINA	AL :	INS'	TALLA	TION	1 :0:	1/07/	09	ORIGI	NAL V	7.O.#:	0
REMARKS	: I	NST	ALL	ED ON	1 1/0	7/0	9									
	:															
(0 + key)			1 8	key						(pha	ase +	ke	ey)			
FUNCTION	PH	ASE		FUN	CTIO	V		1	2	2	3	4	5	6	7	8
FORCITOR		456			100000											
VEH. RECALL	2	6		O MAX	I			20	60)	0	0	0	60	0	20
PED. RECALL	0	•			II/I	CH	W	0	(0	0	0	0	0	0
RED LOCK	1			2 WAI				o	17		0	0	0	0	0	14
ARTIOM FOCK	ō				SH D	AT.		o	23		0	0	0	0	0	20
	12	-			INI		Γ.	Ö	25		0	0	0	25	0	0
PERMIT	2	0			GRE		ш	5	15		0	Ó	Ö	15	0	5
PED PHASES				6 T E		77.4		5	15		0	o	Ö	15	0	5
LEAD PHASES		5		7 T T				5	15		0	0	0	15	0	5
DOUBLE ENTRY	0					an.	-	5	1.5	•	U	V	U	13	0	3
SEQ. TIMING	0	12			ERVE	GA.	P	2 0	010		0 0	^	0 0	010	0.0	3.0
START UP GRN	2	6		9 PAS				3.0				.0	0.0	010		
OVERLAP A	0			A MIN				3.0	6.0			.0	0.0	6.0	0.0	3.0
OVERLAP B	0				ED/A	CT		0.0	2.0			.0	0.0	2.0	0.0	0.0
OVERLAP C	0			C YEI				3.5	4.0			.0	0.0	4.0	0.0	3.5
OVERLAP D	0				CLE				2.0			.0	0.0	2.0		2.5
EXCLUSIVE	0			E REI	REVI	ERT		0.0	0.0	0.		.0	0.0	0.0	0.0	0.0
SIM. GAP	0			F WAI	K II			0	()	0	0	0	0	0	_0
PAGE ID : 0					TAI	BLE	*	1* (1	of.	3)						

LEVELS OF SERVICE

Intersection levels of service (LOS) were determined through implementation of the methodology presented in the *Highway Capacity Manual 6th Edition*, published by the Transportation Research Board.

i. Signalized Intersections

An explanation of level of service at signalized intersections is as follows:

This subsection describes the LOS criteria for the motorized vehicle mode. The criteria for the motorized vehicle mode are different from those for other modes. Specifically, the motorized vehicle mode criteria are based on performance measures that are field measurable and perceivable by travelers. The criteria for other modes are based on scores reported by travelers indicating their perception of service quality.

LOS can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay alone is used to characterize LOS for the entire intersection of an approach. Control delay and volume-to-capacity ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a surrogate measure of driver discomfort and fuel consumption. The volume-to-capacity ratio quantifies the degree to which a phases's capacity is utilized by a lane group. The following paragraphs describe each LOS.

LOS A describes operations with a control delay of 10 s/veh or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

LOS B describes operations with control delay between 10 and 20 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

LOS C describes operations with control delay between 20 and 35 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual *cycle failures* (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

LOS D describes operations with control delay between 35 and 55 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

LOS E describes operations with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

LOS F describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

A lane group can incur a delay less than 80 s/veh when the volume-to-capacity ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and volume-to-capacity ratio are considered when lane group LOS is established. A ratio of 1.0 or more indicates that cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80 s/veh represents failure from a delay perspective).

Exhibit 19-8 lists the LOS thresholds established for the motor vehicle mode at a signalized intersection.

Exhibit 19-8 LOS Criteria: Signalized Intersection

Ocutori Balan (atrab)	LOS by Volume-to-	Capacity (v/c) Ratio ⁽¹⁾
Control Delay (s/veh)	v/c ≤ 1.0	v/c > 1.0
≤ 10	А	F
> 10 – 20	В	F
> 20 – 35	С	F
> 35 – 55	D	F
> 55 – 80	E	F
> 80	F	F

⁽¹⁾ For approach-based and intersectionwide assessments, LOS is defined solely by control delay.

ii. Unsignalized Intersections

The following level-of-service criteria for two-way stop-controlled and all-way stop-controlled intersections differ from the criteria for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from various kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized intersection. Thus, a higher level of control delay is acceptable at a signalized intersection for the same level of service.

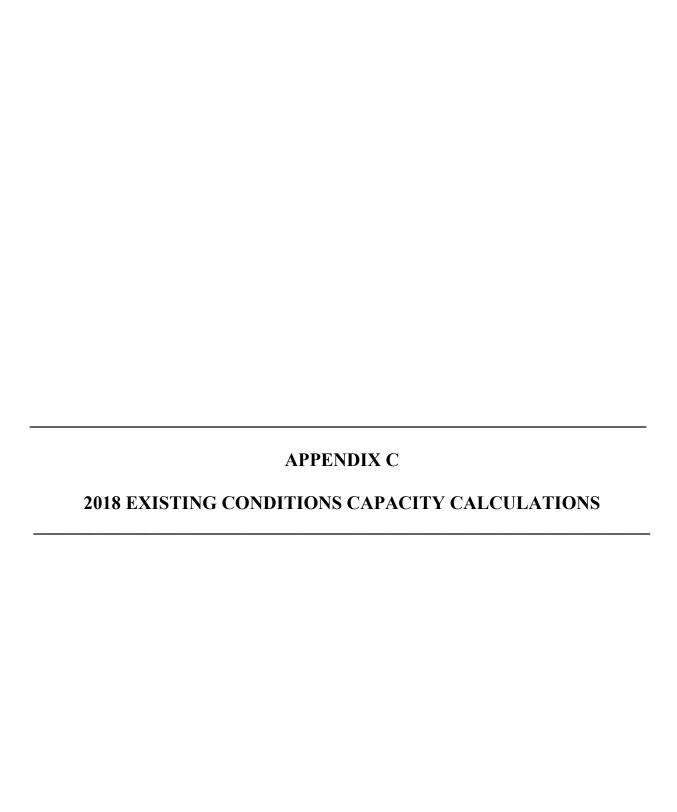

Level of service for two-way stop-controlled (TWSC) intersections and an all-way stop control intersections is determined by the computed or measured control delay. For motor vehicles, LOS is determined for each minor-street movement (or shared movement), as well as the major-street left turns, by using the criteria given in Exhibit 20-2 and Exhibit 21-8. For TWSC intersections, LOS is not defined for the intersection as a whole or for major –street approaches for three primary reasons: (a) major-street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles a typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay for all vehicles; and (c) the resulting low delay can mask LOS deficiencies for minor movements. Level of service for two-way stop control is not defined for the intersection as a whole, while level of service for all-way stop control is defined for the intersection as a whole. Level of service criteria are given in Exhibit 20-2 (two-way stop-controlled intersections) and Exhibit 21-8 (all-way stop controlled intersections).

Exhibit 20-2 and Exhibit 21-8 LOS Criteria: Two-Way and All-Way Stop Controlled Intersections

Control Polov (alash)	LOS by Volume-to-C	apacity (v/c) Ratio (1)(2)
Control Delay (s/veh)	v/c ≤ 1.0	v/c > 1.0
0 – 10	Α	F
> 10 – 15	В	F
> 15 – 25	С	F
> 25 – 35	D	F
> 35 – 50	Е	F
> 50	F	F

⁽¹⁾ TWSC: The LOS criteria apply to each lane on a given approach and to each approach on the minor street. LOS is not calculated for major-street approaches or for the intersection as a whole.

⁽²⁾ AWSC: For approaches and intersectionwide assessment, LOS is defined solely by control delay.

Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	150 150 0 1.00 1.00 1904 155 0.97 5 187 0.10	264 264 264 0 1.00 No 1769 272 0.97 14	2 2 0 1.00 1.00 1769 2 0.97	WBL 37 37 0 1.00 1.00 1864 38	WBT 609 609 0 1.00 No 1879	573 573 0 1.00	2 2 0 1.00 1.00	NBT 14 14 0 1.00	9 9 0 0.96 1.00	SBL 436 436 0 1.00	SBT 28 28 0	SBR 139 139 0 0.98
Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	150 150 0 1.00 1.00 1904 155 0.97 5 187 0.10	264 264 0 1.00 No 1769 272 0.97 14	2 0 1.00 1.00	37 37 0 1.00 1.00	609 609 0 1.00 No	573 0 1.00	2 0 1.00	14 14 0	9 9 0 0.96	436 436 0 1.00	28 28 0	139 139 0
Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	150 0 1.00 1.00 1904 155 0.97 5 187 0.10	264 0 1.00 No 1769 272 0.97 14	2 0 1.00 1.00	37 0 1.00 1.00	609 0 1.00 No	573 0 1.00	2 0 1.00	14 0	9 0 0.96	436 0 1.00	28 0	139 0
Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	0 1.00 1.00 1904 155 0.97 5 187 0.10	1.00 No 1769 272 0.97 14	0 1.00 1.00	0 1.00 1.00	1.00 No	0 1.00	0 1.00	0	0 0.96	0 1.00	0	0
Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	1.00 1.00 1904 155 0.97 5 187 0.10	1.00 No 1769 272 0.97 14	1.00 1.00 1769 2	1.00 1.00	1.00 No	1.00	1.00		0.96	1.00		
Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	1.00 1904 155 0.97 5 187 0.10	No 1769 272 0.97 14	1.00 1769 2	1.00 1864	No			1.00			4.00	በ ዓጸ
Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	1904 155 0.97 5 187 0.10	No 1769 272 0.97 14	1769 2	1864	No	1.00	1.00	1.00	1.00	4 00		0.50
Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	155 0.97 5 187 0.10	1769 272 0.97 14	2						1.00	1.00	1.00	1.00
Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, %	155 0.97 5 187 0.10	272 0.97 14	2		1879			No			No	
Peak Hour Factor Percent Heavy Veh, %	0.97 5 187 0.10	0.97 14		38	.010	1879	1781	1781	1932	1934	1919	2042
Percent Heavy Veh, %	5 187 0.10	14	0.97		628	591	2	14	9	470	0	143
•	187 0.10		0.0.	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
•	0.10	1000	14	5	4	4	21	21	11	3	4	1
Cap, veh/h		1822	13	79	847	753	8	53	127	601	0	456
Arrive On Green		0.53	0.53	0.04	0.47	0.47	0.03	0.03	0.03	0.16	0.00	0.16
Sat Flow, veh/h	1813	3419	25	1776	1785	1588	221	1549	1570	3683	0	1702
Grp Volume(v), veh/h	155	134	140	38	628	591	16	0	9	470	0	143
Grp Sat Flow(s), veh/h/ln	1813	1680	1764	1776	1785	1588	1770	0	1570	1842	0	1702
Q Serve(g_s), s	8.9	4.3	4.3	2.2	30.4	33.2	0.9	0.0	0.6	13.0	0.0	7.2
Cycle Q Clear(g_c), s	8.9	4.3	4.3	2.2	30.4	33.2	0.9	0.0	0.6	13.0	0.0	7.2
Prop In Lane	1.00	7.0	0.01	1.00	00. ∓	1.00	0.12	0.0	1.00	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	187	895	940	79	847	753	61	0	127	601	0	456
V/C Ratio(X)	0.83	0.15	0.15	0.48	0.74	0.78	0.26	0.00	0.07	0.78	0.00	0.31
Avail Cap(c_a), veh/h	255	946	993	117	871	775	116	0.00	176	760	0.00	530
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	46.9	12.6	12.6	49.7	22.7	23.5	50.1	0.00	45.5	42.8	0.00	31.3
Incr Delay (d2), s/veh	15.1	0.3	0.3	4.5	5.1	7.3	2.3	0.0	0.2	4.1	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.8	1.6	1.7	1.1	13.3	13.3	0.5	0.0	0.0	6.3	0.0	3.0
Unsig. Movement Delay, s/veh	4.0	1.0	1.7	1.1	13.3	13.3	0.5	0.0	0.2	0.5	0.0	3.0
	61.0	12.9	12.9	54.2	27.9	30.8	52.4	0.0	45.7	46.9	0.0	31.7
LnGrp Delay(d),s/veh	61.9		12.9 B	54.2 D	21.9 C	30.6 C			45.7 D	46.9 D		
LnGrp LOS	<u>E</u>	B	ь	U		U	D	A	U	U	A C42	С
Approach Vol, veh/h		429			1257			25			613	
Approach Delay, s/veh		30.6			30.0			50.0			43.4	
Approach LOS		С			С			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	17.0	56.5		9.7	10.7	62.8		23.4				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	15.0	52.0		7.0	7.0	60.0		22.0				
Max Q Clear Time (g_c+l1), s	10.9	35.2		2.9	4.2	6.3		15.0				
Green Ext Time (p_c), s	0.2	15.3		0.0	0.0	7.6		1.7				
Intersection Summary												
HCM 6th Ctrl Delay			33.9									
HCM 6th LOS			C									
Notes												

→	•	•	←	•	/
FBT	FBR	WRI	WRT	NBI	NBR
					11510
	26				1
				•	1
				-	0
U			U		1.00
1.00			1.00		1.00
	1.00	1.00			1.00
	1721	17//			2018
					2010
					-
					0.97
					0
					3
					0.00
					624
223	231	25	760	3	0
1645	1695	1661	1814	1873	0
3.0	3.0	0.5	3.2	0.1	0.0
3.0	3.0	0.5	3.2	0.1	0.0
	0.12	1.00		0.33	0.33
721			2340		0
					0.00
					0.00
					1.00
					0.00
					0.00
					0.0
					0.0
	0.6	0.3	0.2	0.1	0.0
	^ =	00.0	0.0	40.0	2.2
					0.0
	A	C			A
6.5			3.5	46.2	
Α			Α	D	
1	2		4		6
7.1	21.0		6.1		28.1
					6.0
					67.0
					5.2
0.0	7.4		0.0		16.8
		47			
		А			
	1645 3.0 3.0 721 0.31 2116 1.00 1.00 6.2 0.2 0.0 0.6 6.5 A 454 6.5 A 1 7.1 6.0 17.0 2.5	414 26 414 26 0 0 1.00 1.00 1.00 1.00 1731 1731 427 27 0.97 0.97 11 11 1378 87 0.44 0.44 3228 198 223 231 1645 1695 3.0 3.0 3.0 3.0 0.12 721 744 0.31 0.31 2116 2181 1.00 1.00 1.00 1.00 1.00 1.00 6.2 6.2 0.2 0.2 0.0 0.0 0.6 0.6 6.5 6.5 A A 454 6.5 A 1 2 7.1 21.0 6.0 6.0 17.0 44.0 2.5 5.0	414 26 24 414 26 24 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.731 1731 1744 427 27 25 0.97 0.97 0.97 11 11 13 1378 87 51 0.44 0.44 0.03 3228 198 1661 223 231 25 1645 1695 1661 3.0 3.0 0.5 3.0 3.0 0.5 3.0 3.0 0.5 0.12 1.00 721 744 51 0.31 0.31 0.49 2116 2181 826 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	11 14 26 24 737 414 26 24 737 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 No 100 1.00 1.00 No 1.00 1.00 1.00 No 1731 1731 1744 1909 427 27 25 760 0.97 0.97 0.97 0.97 11 11 13 2 1378 87 51 2340 0.44 0.44 0.03 0.64 3228 198 1661 3723 223 231 25 760 1645 1695 1661 1814 3.0 3.0 0.5 3.2 0.12 1.00 721 744 51 2340 0.31 0.31 0.49 0.32 211	#14

	→	•	•	←	4	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	∱ }		ሻ	^	ሻ	7		
Traffic Volume (veh/h)	429	97	51	689	6	3		
Future Volume (veh/h)	429	97	51	689	6	3		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No			No	No			
Adj Sat Flow, veh/h/ln	1716	1716	1939	1879	2018	2018		
Adj Flow Rate, veh/h	456	103	54	733	6	3		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Percent Heavy Veh, %	12	12	0	4	0	0		
Cap, veh/h	1151	258	107	2349	23	20		
Arrive On Green	0.43	0.43	0.06	0.66	0.01	0.01		
Sat Flow, veh/h	2732	594	1847	3665	1922	1710		
Grp Volume(v), veh/h	280	279	54	733	6	3		
Grp Sat Flow(s),veh/h/ln	1630	1609	1847	1785	1922	1710		
Q Serve(g_s), s	4.3	4.3	1.0	3.2	0.1	0.1		
Cycle Q Clear(g_c), s	4.3	4.3	1.0	3.2	0.1	0.1		
Prop In Lane		0.37	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	709	700	107	2349	23	20		
V/C Ratio(X)	0.39	0.40	0.51	0.31	0.26	0.15		
Avail Cap(c_a), veh/h	1974	1949	864	6584	582	518		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	7.0	7.0	16.6	2.7	17.8	17.8		
Incr Delay (d2), s/veh	0.4	0.4	3.7	0.1	5.9	3.2		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	0.9	0.9	0.5	0.2	0.1	0.0		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	7.4	7.4	20.3	2.8	23.7	21.0		
LnGrp LOS	Α	Α	С	Α	С	С		
Approach Vol, veh/h	559			787	9			
Approach Delay, s/veh	7.4			4.0	22.8			
Approach LOS	А			Α	С			
Timer - Assigned Phs	1	2				6	8	
Phs Duration (G+Y+Rc), s	8.1	21.8				29.9	6.4	
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0	
Max Green Setting (Gmax), s	17.0	44.0				67.0	11.0	
Max Q Clear Time (g_c+l1), s	3.0	6.3				5.2	2.1	
Green Ext Time (p_c), s	0.1	9.5				16.0	0.0	
Intersection Summary								
HCM 6th Ctrl Delay			5.5					
HCM 6th LOS			3.5 A					
I IOW OUI LOO			^					

	۶	→	•	•	←	•	•	†	<i>></i>	\		- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		ች	↑ ↑			र्स	7	ች	4	7
Traffic Volume (vph)	150	264	2	37	609	573	2	14	9	436	28	139
Future Volume (vph)	150	264	2	37	609	573	2	14	9	436	28	139
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	12	12	10	12	12	12	12	12	11	11	13
Grade (%)		-2%		. •	-1%		· <u>-</u>	-5%			-2%	. •
Storage Length (ft)	580	=/*	0	100	. , ,	0	0	0,0	0	0	_,,	85
Storage Lanes	1		0	1		0	0		1	1		1
Taper Length (ft)	25			25		-	25			25		-
Right Turn on Red			No			No			No			No
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		1023			612			255			258	
Travel Time (s)		19.9			11.9			7.0			7.0	
Confl. Peds. (#/hr)	3		3	3		3	9		1	1		9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	5%	14%	0%	5%	4%	7%	0%	21%	11%	3%	4%	1%
Shared Lane Traffic (%)				- 70						47%		.,.
Lane Group Flow (vph)	155	274	0	38	1219	0	0	16	9	238	240	143
Number of Detectors	1	1		1	1		1	1	1	1	1	1
Detector Template	Left	•					Left	•	·		•	
Leading Detector (ft)	40	231		40	231		20	40	40	40	40	40
Trailing Detector (ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Position(ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Size(ft)	40	6		40	6		20	40	40	40	40	40
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
Protected Phases	1	6		5	2		. 4	4	5	. 8	8	1
Permitted Phases									4			8
Detector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase												
Minimum Initial (s)	7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	37.0		13.0	37.0		13.0	13.0	13.0	28.0	28.0	13.0
Total Split (s)	21.0	66.0		13.0	58.0		13.0	13.0	13.0	28.0	28.0	21.0
Total Split (%)	17.5%	55.0%		10.8%	48.3%		10.8%	10.8%	10.8%	23.3%	23.3%	17.5%
Maximum Green (s)	15.0	60.0		7.0	52.0		7.0	7.0	7.0	22.0	22.0	15.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			Lead
Lead-Lag Optimize?		J										
Vehicle Extension (s)	3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min		None	Min		None	None	None	None	None	None
Walk Time (s)		11.0			11.0					4.0	4.0	
Flash Dont Walk (s)		20.0			20.0					18.0	18.0	

1: Technology Dr/Bates St & Second Ave

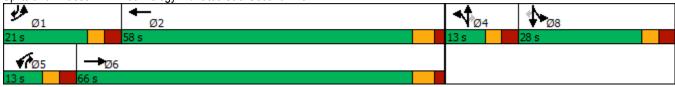
	۶	-	•	•	←	•	•	†	~	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.72	0.15		0.33	0.85			0.14	0.06	0.78	0.78	0.27
Control Delay	65.5	12.8		60.4	33.4			55.2	30.9	60.8	60.7	25.9
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	65.5	12.8		60.4	33.4			55.2	30.9	60.8	60.7	25.9
Queue Length 50th (ft)	102	44		25	353			11	6	161	162	63
Queue Length 95th (ft)	#224	85		67	#569			36	15	#322	#325	129
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	245	1960		114	1652			115	139	360	363	558
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.63	0.14		0.33	0.74			0.14	0.06	0.66	0.66	0.26

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 102.6


Natural Cycle: 95

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2018 Existing Conditions Timing Plan: AM Peak

	-	•	•	←	•	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ Ъ	LUIT	YVDL	↑ ↑	NDL NDL	NOIN
	T ₱ 414	26	1 24	TT 737	T	1
Traffic Volume (vph) Future Volume (vph)	414	26	24	737	1	1
	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)		12	10			12
Grade (%)	1%	•	000	-1%	-3%	
Storage Length (ft)		0	200		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Right Turn on Red		Yes				No
Link Speed (mph)	35			35	25	
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)						1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	11%	4%	13%	2%	0%	0%
Shared Lane Traffic (%)	1170	.,,	.0,0	=70	• 70	• 70
Lane Group Flow (vph)	454	0	25	760	2	0
Number of Detectors	2	U	1	2	1	U
Detector Template			Left		Left	
•	261		40	261	40	
Leading Detector (ft)						
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	<u> </u>			· ·		
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases	2			U	4	
	2		1	e	1	
Detector Phase	2		1	6	4	
Switch Phase	45.0		F ^	45.0	5 2	
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	50.0		23.0	73.0	17.0	
Total Split (%)	55.6%		25.6%	81.1%	18.9%	
Maximum Green (s)	44.0		17.0	67.0	11.0	
Yellow Time (s)	4.0		3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead	0.0	0.0	
Load/Lay	Lay		Leau			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

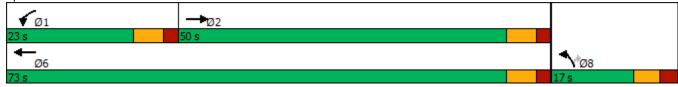
	-	\rightarrow	•	←	~	~		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR		
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Minimum Gap (s)	6.0		3.0	6.0	3.0			
Time Before Reduce (s)	15.0		5.0	15.0	5.0			
Time To Reduce (s)	15.0		5.0	15.0	5.0			
Recall Mode	Min		None	Min	None			
v/c Ratio	0.16		0.11	0.23	0.01			
Control Delay	3.4		18.6	1.3	19.5			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	3.4		18.6	1.3	19.5			
Queue Length 50th (ft)	0		4	0	0			
Queue Length 95th (ft)	77		26	61	6			
Internal Link Dist (ft)	897			943	166			
Turn Bay Length (ft)			200					
Base Capacity (vph)	3073		646	3557	486			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.15		0.04	0.21	0.00			
Intersection Summary								
Area Type:	Other							
Cycle Length: 90								
Actuated Cycle Length: 40	.7							
Natural Cycle: 45								
Control Type: Actuated-Un	coordinated							
Splits and Phases: 2: Mi	iddle Access	9 Canana	1 1					
Spiils and Phases. 2. Wi	ludie Access	a Second	Ave				la la	
ÿ1		P Ø2					₹ Ø4	
23 s	50 s	S					17 s	
←								

	-	•	•	•	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIX	YVDL Š	†	NDL Š	TVDIC
Traffic Volume (vph)	T № 429	97	51	TT 689	6	3
Future Volume (vph)	429	97	51	689	6	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	1%	12	10	-1%	-3%	12
	170	٥	230	-170		٥
Storage Length (ft)		0	230		0	0
Storage Lanes		U	25		25	Í
Taper Length (ft)		V	25		25	V
Right Turn on Red	٦٢	Yes		25	٥٢	Yes
Link Speed (mph)	35			35	25	
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1	• • •	• • •	19.0	5.2	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	12%	2%	0%	4%	0%	0%
Shared Lane Traffic (%)						
Lane Group Flow (vph)	559	0	54	733	6	3
Number of Detectors	2		1	2	1	1
Detector Template						
Leading Detector (ft)	261		40	261	40	40
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	OI LA		OI LX	OI LK	OI LA	OI. LA
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	255		0.0	255	0.0	0.0
. ,	255			255		
Detector 2 Size(ft)						
Detector 2 Type	CI+Ex			Cl+Ex		
Detector 2 Channel	0.0			0.0		
Detector 2 Extend (s)	0.0			0.0		D
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases						8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	50.0		23.0	73.0	17.0	17.0
Total Split (%)	55.6%		25.6%	81.1%	18.9%	18.9%
Maximum Green (s)	44.0		17.0	67.0	11.0	11.0
Yellow Time (s)	4.0		4.0	4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead	0.0	0.0	0.0
Lead-Lag Optimize?	Lay		Leau			
Leau-Lay Optimize?						

	-	•	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0
Recall Mode	Min		None	Min	None	None
v/c Ratio	0.23		0.18	0.22	0.02	0.01
Control Delay	5.4		17.6	1.3	18.8	15.0
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	5.4		17.6	1.3	18.8	15.0
Queue Length 50th (ft)	0		9	0	1	0
Queue Length 95th (ft)	100		43	61	11	6
Internal Link Dist (ft)	593			897	112	
Turn Bay Length (ft)			230			
Base Capacity (vph)	3019		738	3489	516	464
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.19		0.07	0.21	0.01	0.01

Intersection Summary

Area Type: Other


Cycle Length: 90

Actuated Cycle Length: 40.4

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

	۶	→	•	•	←	•	4	†	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ β		7	∱ î≽			र्स	7	7	र्स	7
Traffic Volume (veh/h)	270	836	1	9	280	350	4	123	55	405	10	68
Future Volume (veh/h)	270	836	1	9	280	350	4	123	55	405	10	68
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.96	1.00		0.87	1.00		0.94
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1964	1949	1949	1939	1819	1819	2067	2067	2067	1934	1979	1995
Adj Flow Rate, veh/h	290	899	1	10	301	376	4	132	59	443	0	73
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	2	2	0	8	8	2	2	2	3	0	4
Cap, veh/h	333	1825	2	31	553	475	5	173	161	653	0	582
Arrive On Green	0.18	0.48	0.48	0.02	0.32	0.32	0.09	0.09	0.09	0.18	0.00	0.18
Sat Flow, veh/h	1870	3795	4	1847	1728	1484	61	2003	1526	3683	0	1585
Grp Volume(v), veh/h	290	439	461	10	301	376	136	0	59	443	0	73
Grp Sat Flow(s),veh/h/ln	1870	1851	1948	1847	1728	1484	2064	0	1526	1842	0	1585
Q Serve(g_s), s	15.2	16.2	16.2	0.5	14.4	23.2	6.5	0.0	3.6	11.3	0.0	3.1
Cycle Q Clear(g_c), s	15.2	16.2	16.2	0.5	14.4	23.2	6.5	0.0	3.6	11.3	0.0	3.1
Prop In Lane	1.00		0.00	1.00		1.00	0.03		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	333	890	937	31	553	475	178	0	161	653	0	582
V/C Ratio(X)	0.87	0.49	0.49	0.32	0.54	0.79	0.76	0.00	0.37	0.68	0.00	0.13
Avail Cap(c_a), veh/h	502	1013	1065	129	602	517	246	0	212	806	0	648
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	40.2	17.7	17.7	48.8	28.1	31.1	44.9	0.0	42.1	38.7	0.0	21.9
Incr Delay (d2), s/veh	10.5	1.5	1.5	5.7	3.0	11.4	9.0	0.0	1.4	1.7	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.8	6.9	7.3	0.3	6.2	9.5	3.8	0.0	1.4	5.3	0.0	1.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	50.7	19.3	19.2	54.6	31.2	42.5	54.0	0.0	43.5	40.4	0.0	22.0
LnGrp LOS	D	В	В	D	С	D	D	Α	D	D	Α	<u>C</u>
Approach Vol, veh/h		1190			687			195			516	
Approach Delay, s/veh		26.9			37.7			50.8			37.8	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	23.9	38.2		14.7	7.7	54.4		23.8				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	27.0	35.0		12.0	7.0	55.0		22.0				
Max Q Clear Time (g_c+l1), s	17.2	25.2		8.5	2.5	18.2		13.3				
Green Ext Time (p_c), s	0.7	7.0		0.2	0.0	24.4		1.6				
Intersection Summary												
HCM 6th Ctrl Delay			33.7									
HCM 6th LOS			С									
Notes												

	→	•	•	←	4	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ħβ		ሻ	^	¥	
Traffic Volume (veh/h)	1111	10	7	360	22	6
Future Volume (veh/h)	1111	10	7	360	22	6
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00	•	1.00	0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		1100	No	No	
Adj Sat Flow, veh/h/ln	1864	1864	1504	1849	2018	2018
Adj Flow Rate, veh/h	1145	10	7	371	23	6
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2	29	6	0.07	0.07
Cap, veh/h	2302	20	13	2652	48	12
Arrive On Green	0.64	0.64	0.01	0.75	0.03	0.03
Sat Flow, veh/h	3692	31	1432	3606	1432	374
Grp Volume(v), veh/h	564	591	7	371	30	0
Grp Sat Flow(s),veh/h/ln	1771	1859	1432	1757	1868	0
Q Serve(g_s), s	9.5	9.5	0.3	1.6	0.9	0.0
Cycle Q Clear(g_c), s	9.5	9.5	0.3	1.6	0.9	0.0
Prop In Lane		0.02	1.00		0.77	0.20
Lane Grp Cap(c), veh/h	1133	1189	13	2652	62	0
V/C Ratio(X)	0.50	0.50	0.53	0.14	0.48	0.00
Avail Cap(c_a), veh/h	1720	1805	202	4281	297	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	5.4	5.4	27.9	1.9	26.9	0.0
Incr Delay (d2), s/veh	0.3	0.3	29.3	0.0	5.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.2	2.3	0.2	0.2	0.5	0.0
Unsig. Movement Delay, s/veh			J. <u>L</u>	V.	3.0	0.0
LnGrp Delay(d),s/veh	5.7	5.7	57.2	1.9	32.6	0.0
LnGrp LOS	Α	3.7 A	57.2 E	Α	02.0 C	Α
Approach Vol, veh/h	1155		<u> </u>	378	30	
• •						
Approach Delay, s/veh	5.7			3.0	32.6	
Approach LOS	Α			Α	С	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	6.5	42.2		7.9		48.7
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	8.0	55.0		9.0		69.0
Max Q Clear Time (g c+l1), s	2.3	11.5		2.9		3.6
Green Ext Time (p_c), s	0.0	24.7		0.0		6.8
" ,	0.0	∠¬.1		0.0		0.0
Intersection Summary						
HCM 6th Ctrl Delay			5.6			
HCM 6th LOS			Α			
Notes						
Notes						

	→	•	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	∱ }		ሻ	^	*/*	7	
Traffic Volume (veh/h)	1105	49	2	364	110	32	
uture Volume (veh/h)	1105	49	2	364	110	32	
nitial Q (Qb), veh	0	0	0	0	0	0	
ed-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
arking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Vork Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1864	1864	1939	1864	2003	2018	
Adj Flow Rate, veh/h	1139	51	2	375	113	33	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	0	5	1	0	
ap, veh/h	2112	95	5	2528	167	150	
Arrive On Green	0.61	0.61	0.00	0.71	0.09	0.09	
at Flow, veh/h	3547	155	1847	3635	1908	1710	
Grp Volume(v), veh/h	584	606	2	375	113	33	
Grp Sat Flow(s),veh/h/ln	1771	1837	1847	1771	1908	1710	
Q Serve(g_s), s	11.5	11.6	0.1	2.0	3.5	1.1	
Cycle Q Clear(g_c), s	11.5	11.6	0.1	2.0	3.5	1.1	
Prop In Lane		0.08	1.00		1.00	1.00	
ane Grp Cap(c), veh/h	1083	1123	5	2528	167	150	
//C Ratio(X)	0.54	0.54	0.40	0.15	0.68	0.22	
Avail Cap(c_a), veh/h	1496	1551	153	3636	505	453	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	6.8	6.8	30.1	2.8	26.7	25.6	
ncr Delay (d2), s/veh	0.4	0.4	43.6	0.0	4.7	0.7	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	3.1	3.2	0.1	0.4	1.7	0.5	
Insig. Movement Delay, s/veh							
nGrp Delay(d),s/veh	7.2	7.2	73.7	2.8	31.4	26.4	
nGrp LOS	Α	Α	Е	Α	С	С	
pproach Vol, veh/h	1190			377	146		
pproach Delay, s/veh	7.2			3.2	30.3		
pproach LOS	Α			Α	С		
imer - Assigned Phs	1	2				6	8
ths Duration (G+Y+Rc), s	6.2	42.9				49.1	11.3
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	5.0	51.0				62.0	16.0
fax Q Clear Time (g c+l1), s	2.1	13.6				4.0	5.5
Freen Ext Time (p_c), s	0.0	23.4				6.8	0.3
· ,	0.0	20.4				0.0	0.5
ersection Summary			0.0				
ICM 6th Ctrl Delay			8.3				
ICM 6th LOS			Α				
Votes							

	۶	→	•	•	←	•	•	†	<u> </u>	\	↓	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† }		ሻ	† }			सी	7	ሻ	4	7
Traffic Volume (vph)	270	836	1	9	280	350	4	123	55	405	10	68
Future Volume (vph)	270	836	1	9	280	350	4	123	55	405	10	68
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	12	12	10	12	12	12	12	12	11	11	13
Grade (%)		-2%			-1%			-5%			-2%	
Storage Length (ft)	580		0	100		0	0		0	0		85
Storage Lanes	1		0	1		0	0		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			No			No			No			No
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		1023			612			255			258	
Travel Time (s)		19.9			11.9			7.0			7.0	
Confl. Peds. (#/hr)	11		24	24		11	3		37	37		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	1%	2%	0%	0%	8%	5%	0%	2%	2%	3%	0%	4%
Shared Lane Traffic (%)										49%		
Lane Group Flow (vph)	290	900	0	10	677	0	0	136	59	222	224	73
Number of Detectors	1	1		1	1		1	1	1	1	1	1
Detector Template	Left						Left					
Leading Detector (ft)	40	231		40	231		20	40	40	40	40	40
Trailing Detector (ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Position(ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Size(ft)	40	6		40	6		20	40	40	40	40	40
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	5	8	8	1
Permitted Phases									4			8
Detector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase												
Minimum Initial (s)	7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	37.0		13.0	37.0		13.0	13.0	13.0	28.0	28.0	13.0
Total Split (s)	33.0	61.0		13.0	41.0		18.0	18.0	13.0	28.0	28.0	33.0
Total Split (%)	27.5%	50.8%		10.8%	34.2%		15.0%	15.0%	10.8%	23.3%	23.3%	27.5%
Maximum Green (s)	27.0	55.0		7.0	35.0		12.0	12.0	7.0	22.0	22.0	27.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min		None	Min		None	None	None	None	None	None
Walk Time (s)		11.0			11.0					4.0	4.0	
Flash Dont Walk (s)		20.0			20.0					18.0	18.0	

1: Technology Dr/Bates St & Second Ave

	•	→	•	•	←	•	4	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.81	0.56		0.09	0.92dr			0.68	0.22	0.77	0.78	0.12
Control Delay	59.6	24.0		55.0	45.9			66.7	25.6	62.5	62.6	18.8
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	59.6	24.0		55.0	45.9			66.7	25.6	62.5	62.6	18.8
Queue Length 50th (ft)	202	256		7	243			98	24	163	165	30
Queue Length 95th (ft)	#338	322		26	323			#196	52	#290	#293	60
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	444	1918		115	1044			223	268	348	350	708
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.65	0.47		0.09	0.65			0.61	0.22	0.64	0.64	0.10

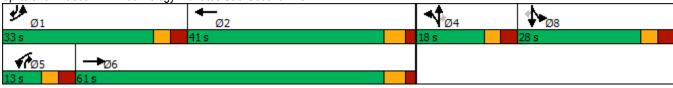
Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 105.6

Natural Cycle: 95


Control Type: Actuated-Uncoordinated

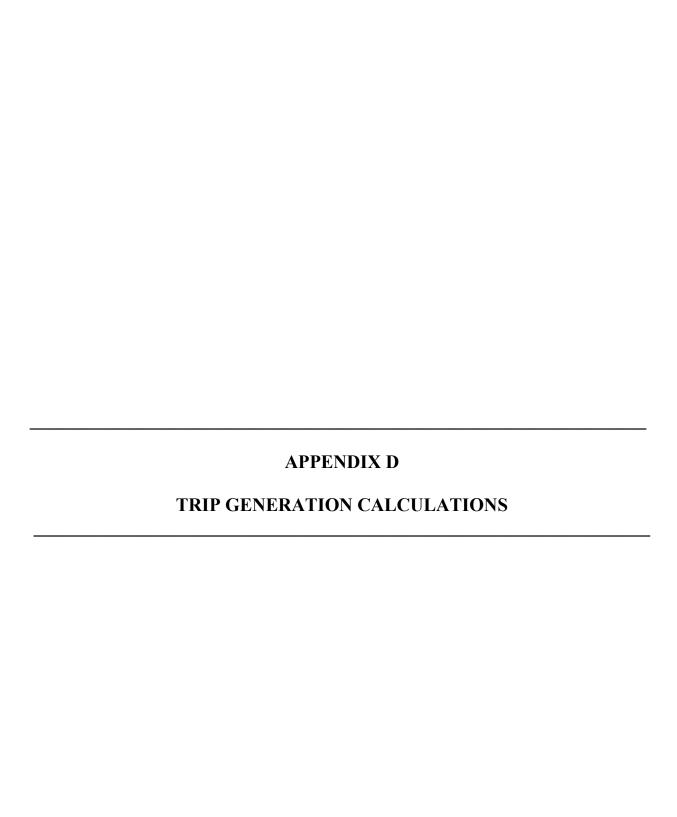
95th percentile volume exceeds capacity, queue may be longer.

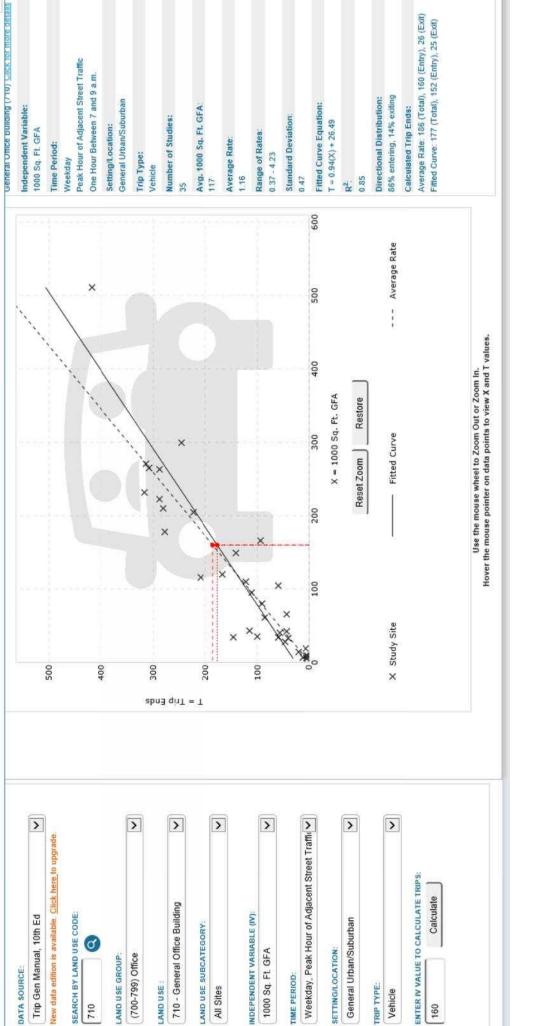
Queue shown is maximum after two cycles.

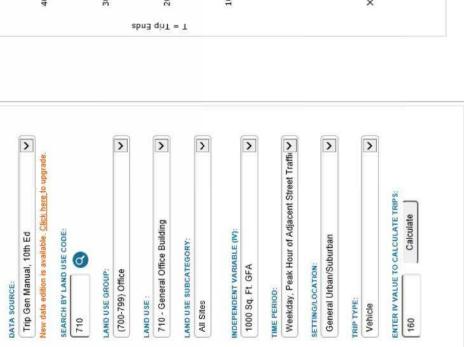
dr Defacto Right Lane. Recode with 1 though lane as a right lane.

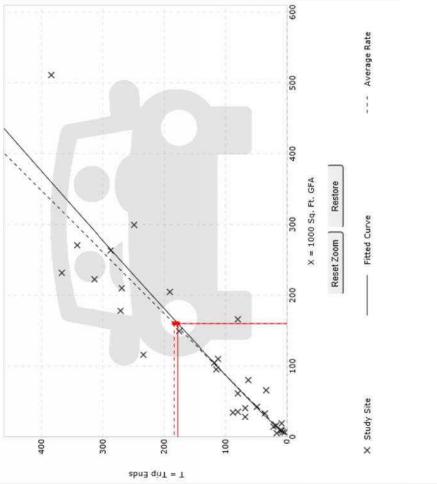
Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2018 Existing Conditions Timing Plan: PM Peak


	→	*	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1 16	LDIX	YVDL	<u>₩</u>	NDL W	NOIN
Traffic Volume (vph)	T ₱ 1111	10	" 7	TT 360	'T' 22	6
	1111	10	7	360	22	6
Future Volume (vph)						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	12	12	12
Grade (%)	1%	_		-1%	-3%	_
Storage Length (ft)		0	200		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Right Turn on Red		Yes				No
Link Speed (mph)	35			35	25	
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)					1	7
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	10%	29%	6%	0%	0%
Shared Lane Traffic (%)	L /0	1070	2070	0 /0	0 /0	0 /0
Lane Group Flow (vph)	1155	0	7	371	29	0
Number of Detectors	2	U	1	2	1	U
	۷		Left	2	Left	
Detector Template	064			004		
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	↓ , ∟ ,			J. L A		
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases	Z		I	U	4	
	0		4	c	A	
Detector Phase	2		1	6	4	
Switch Phase	45.0			4= 0		
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	61.0		14.0	75.0	15.0	
Total Split (%)	67.8%		15.6%	83.3%	16.7%	
Maximum Green (s)	55.0		8.0	69.0	9.0	
Yellow Time (s)	4.0		3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead	0.0	0.0	
Load/Lag	Lay		LGau			


Lanes, Volumes, Timings 2: Middle Access & Second Ave


	→	•	•	←	4	/		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR		
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Minimum Gap (s)	6.0		3.0	6.0	3.0			
Time Before Reduce (s)	15.0		5.0	15.0	5.0			
Time To Reduce (s)	15.0		5.0	15.0	5.0			
Recall Mode	Min		None	Min	None			
v/c Ratio	0.37		0.05	0.12	0.14			
Control Delay	3.9		36.9	1.6	35.4			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	3.9		36.9	1.6	35.4			
Queue Length 50th (ft)	0		2	0	8			
Queue Length 95th (ft)	228		17	33	42			
Internal Link Dist (ft)	897			943	166			
Turn Bay Length (ft)			200					
Base Capacity (vph)	3092		187	3117	287			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.37		0.04	0.12	0.10			
Intersection Summary								
Area Type:	Other							
Cycle Length: 90								
Actuated Cycle Length: 63								
Natural Cycle: 50								
Control Type: Actuated-Unc	oordinated							
Calife and Dhasses O. Mid	dle Access	0 Caaaad	۸.,۰					
Splits and Phases: 2: Mid	ule Access	& Second	Ave					1
√ø1 →	1 02							↑ ø4
14s 61s								15 s
← Ø6								
75 s								-


	-	•	•	←	4	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIK	YVDL	↑ ↑	₩.	TADIX
Traffic Volume (vph)	1105	49	2	TT 364	110	32
` . ,	1105	49	2	364	110	32
Future Volume (vph)	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)						
Lane Width (ft)	12	12	10	12	12	12
Grade (%)	1%			-1%	-3%	
Storage Length (ft)		0	230		0	0
Storage Lanes		0	1		1	1
Taper Length (ft)			25		25	
Right Turn on Red		Yes				Yes
Link Speed (mph)	35			35	25	
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1			19.0	5.2	
Confl. Peds. (#/hr)					3	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	0%	5%	1%	0%
Shared Lane Traffic (%)	270	170	0,70	0,0	170	10%
Lane Group Flow (vph)	1190	0	2	375	116	30
Number of Detectors	2	U	1	2	110	1
Detector Template			ı		ı	ı
•	261		40	261	40	40
Leading Detector (ft)						
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	i Giiii
Permitted Phases	Z		ı	U	U	8
	2		1	c	0	
Detector Phase	2		1	6	8	8
Switch Phase	45.0		F ^	45.0		. .
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	57.0		11.0	68.0	22.0	22.0
Total Split (%)	63.3%		12.2%	75.6%	24.4%	24.4%
Maximum Green (s)	51.0		5.0	62.0	16.0	16.0
Yellow Time (s)	4.0		4.0	4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead	0.0	0.0	0.0
Load/Lay	Lay		Leau			

	-	\rightarrow	•	←	1	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0	
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0	
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0	
Recall Mode	Min		None	Min	None	None	
v/c Ratio	0.47		0.01	0.15	0.42	0.12	
Control Delay	7.5		37.0	4.0	34.5	13.0	
Queue Delay	0.0		0.0	0.0	0.0	0.0	
Total Delay	7.5		37.0	4.0	34.5	13.0	
Queue Length 50th (ft)	104		1	24	49	0	
Queue Length 95th (ft)	270		8	46	109	24	
Internal Link Dist (ft)	593			897	112		
Turn Bay Length (ft)			230				
Base Capacity (vph)	2692		136	3027	466	416	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.44		0.01	0.12	0.25	0.07	
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 66	.9						
Natural Cycle: 55							
Control Type: Actuated-Un	coordinated						
Splits and Phases: 6: W	estern Acces	s & Seco	nd Ave				
√ø1 →ø2							
11 s 57 s							
4							

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Independent Variable:

1000 Sq. Ft. GFA

Time Period:

Weekday

General Urban/Suburban

Trip Type:

Vehicle

Setting/Location:

Avg. 1000 Sq. Ft. GFA.

Number of Studies:

Use the mouse wheel to Zoom Out or Zoom In. Hover the mouse pointer on data points to view ${\bf X}$ and ${\bf I}$ values.

Average Rate: 184 (Total), 29 (Entry), 155 (Exit) Fitted Curve: 178 (Total), 28 (Entry), 150 (Exit)

Directional Distribution: 16% entering, 84% exiting

Calculated Trip Ends:

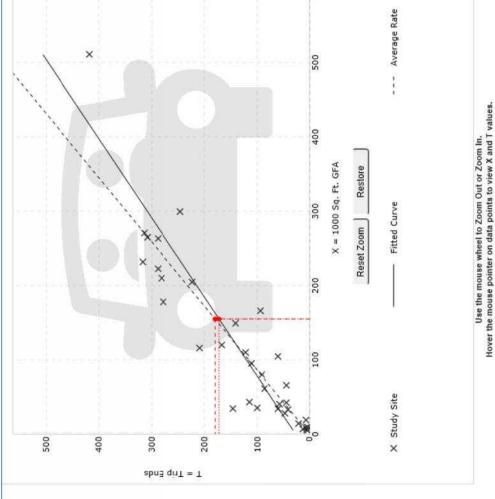
Fitted Curve Equation: Ln(T) = 0.95 Ln(X) + 0.36

0.88

Standard Deviation.

0.42

Range of Rates:


0.47 - 3.23

Average Rate:

1.15

		200		400			300		200	>	×× ××	X.	×	00 100				X Study Site		
)	lo upgrade.				•	Ends	S	-1	>		(Street Traffic		(<		[K]	S	
DATA SOURCE:	Trip Gen Manual, 10th Ed	New data edition is available. Click here to upgrade.	SEARCH BY LAND USE CODE:	710	LAND USE GROUP:	(700-799) Office	LAND USE:	710 - General Office Building	LAND USE SUBCATEGORY:	All Sites	INDEPENDENT VARIABLE (IV):	1000 Sq. Ft. GFA	TIME PERIOD:	Weekday, Peak Hour of Adjacent Street Traffic	SETTING/LOCATION:	General Urban/Suburban	TRIP TYPE:	Vehicle	ENTER IV VALUE TO CALCULATE TRIPS:	155 Calculate

General Office Building (710) Crick for more details

⊙ o(

Independent Variable: 1000 Sq. Ft. GFA

Time Period:

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m. Weekday

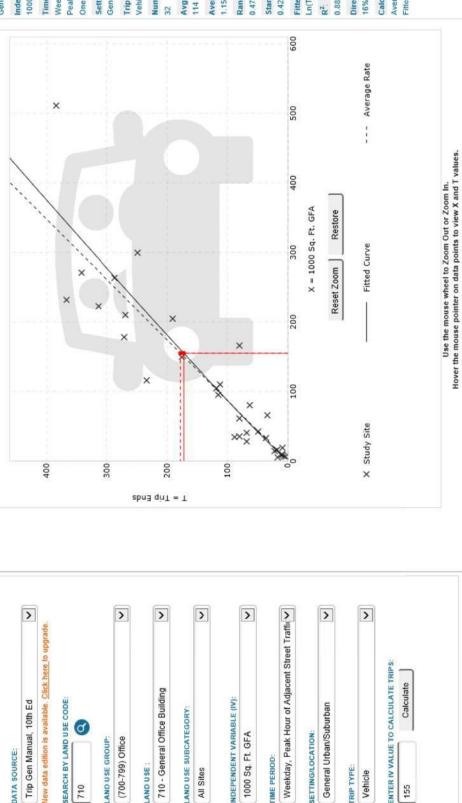
General Urban/Suburban Setting/Location:

Trip Type: Vehicle

Number of Studies:

Avg. 1000 Sq. Ft. GFA:

Average Rate: 1.16 Range of Rates: 0.37 - 4.23


Standard Deviation: 0.47 Fitted Curve Equation: T = 0.94(X) + 26.49

600

86% entering, 14% exiting Directional Distribution:

Calculated Trip Ends:

Average Rate: 180 (Total), 155 (Entry), 25 (Exit) Fitted Curve: 172 (Total), 148 (Entry), 24 (Exit)

710 - General Office Building

LAND USE:

(700-799) Office LAND USE GROUP:

LAND USE SUBCATEGORY:

All Sites

INDEPENDENT VARIABLE (IV):

1000 Sq. Ft. GFA

SEARCH BY LAND USE CODE:

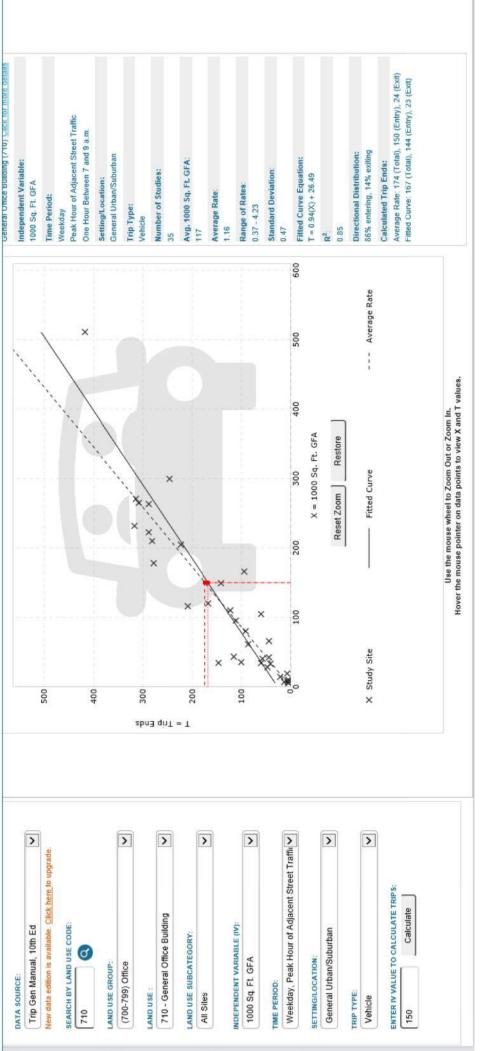
710

Trip Gen Manual, 10th Ed

DATA SOURCE:

ENTER IV VALUE TO CALCULATE TRIPS:

General Urban/Suburban

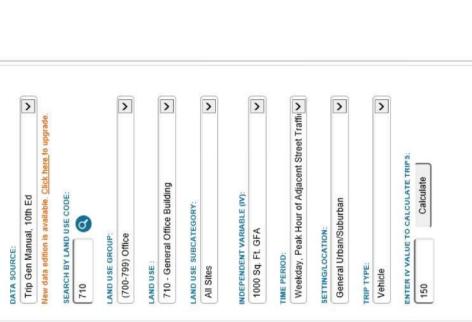

TRIP TYPE: Vehicle

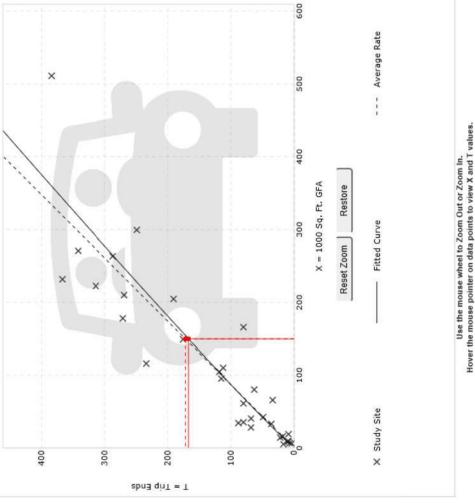
SETTING/LOCATION:

Calculate

155

Average Rate: 178 (Total), 28 (Entry), 150 (Exit) Fitted Curve: 173 (Total), 28 (Entry), 145 (Exit) Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m. 16% entering, 84% exiting Directional Distribution: Independent Variable: General Urban/Suburban Ln(T) = 0.95 Ln(X) + 0.36Fitted Curve Equation: Avg. 1000 Sq. Ft. GFA: Calculated Trip Ends: Standard Deviation: Number of Studies: Setting/Location: 1000 Sq. Ft. GFA Range of Rates; Average Rate: Time Period: Trip Type: 0.47 - 3.23 Weekday Vehicle 0.42




					General Light Industrial (110) CECK for m
DATA SOURCE:					Independent Variable:
Trip Gen Manual, 10th Ed					1000 Sq. Ft. GFA
New data edition is available. Click here to upgrade.		400			Time Period:
CH BY LAND					Weekday Peak Hour of Adjacent Street Traffic
110					One Hour Between 4 and 6 p.m.
LAND USE GROUP:		300	×		Setting/Location: General Urban/Suburban
(100-199) Industrial	S		×		Trip Type:
LAND USE:	.bn∃				Vehicle
110 - General Light Industrial	qinT	200		×	Number of Studies:
LAND USE SUBCATEGORY:	= 1		\x		Avg. 1000 Sq. Ft. GFA:
All Sites			×		29
		100		×	Average Rate: 0.63
INDEPENDENT VARIABLE (IV):		×			Range of Bates
1000 Sq. Ft. GFA		×			0.07 - 7.02
TIME PERIOD:		××××	×	×	Standard Deviation:
Weekday, Peak Hour of Adjacent Street Traffil V		** ***	×		0.68
		0	100 200	300 400	Fitted Curve Equation:
SETTING/LOCATION:			X = 1000 Sq. Ft. GFA		Ln(T) = 0.69 Ln(X) + 0.43
General Urban/Suburban			Bacet Zoom Restore		R2.
TDID TVDE-					26.0
Vehicle		X Study Site	Fitted Curve	Average Rate	13% entering, 87% exting
ENTER IV VALUE TO CALCULATE TRIPS:					Calculated Trip Ends: Average Rate: 25 (Total), 3 (Entry), 22 (E
40 Caiculate					Fitted Curve: 20 (Total), 3 (Entry), 17 (Ex
			Use the mouse wheel to Zoom Out or Zoom In.		
		Hover	Hover the mouse pointer on data points to view X and T values.	·8:	

Inp Gen Manual, 10th Ed			
w data culture as available. Chick liese to upyrade.	300		
SEARCH BY LAND USE CODE:			
110	×		×
LAND USE GROUP:			,
(100-199) Industrial	× ×		`,'×
LAND USE:		**	×
110 - General Light Industrial	qnT		<
LAND USE SUBCATEGORY:	-1		
All Sites	X X		
INDEPENDENT VARIABLE (IV):	×		
1000 Sq. Ft. GFA	× × ×	\	×
TIME PERIOD:	×	×	
Weekday, Peak Hour of Adjacent Street Traffir	000 1000	200	300 400
SETTING/LOCATION:		X = 1000 Sq. Ft. GFA	
General Urban/Suburban		Reset Zoom Restore	
TRIP TYPE:			
Vehicle	X Study Site	— Fitted Curve	Average Rate
ENTER IV VALUE TO CALCULATE TRIPS: Calculate Calculate			

erai Light industriai (1110) Click for more details rage Rate: 28 (Total), 25 (Entry), 3 (Exit) ed Curve: 23 (Total), 20 (Entry), 3 (Exit) k Hour of Adjacent Street Traffic Hour Between 7 and 9 a.m. ted Curve Equation: (T) = 0.74 Ln(X) + 0.39 ctional Distribution: entering, 12% exiting spendent Variable: eral Urban/Suburban . 1000 Sq. Ft. GFA: ulated Trip Ends: nber of Studies: idard Deviation. ing/Location: ge of Rates: Type: rage Rate: 0 Sq. Ft. GFA e Period: - 4.46 ekday

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Independent Variable:

1000 Sq. Ft. GFA

Time Period:

Weekday

General Urban/Suburban

Trip Type:

Setting/Location:

Avg. 1000 Sq. Ft. GFA.

Number of Studies:

Average Rate: 173 (Total), 28 (Entry), 145 (Exit) Fitted Curve: 167 (Total), 26 (Entry), 141 (Exit)

16% entering, 84% exiting

Calculated Trip Ends:

Directional Distribution:

0.88

Ln(T) = 0.95 Ln(X) + 0.36

Fitted Curve Equation:

Standard Deviation:

0.42

Range of Rates:

0.47 - 3.23

Average Rate:

1.15

General Office Building (710) Click for more

Independent Variable:

1000 Sq. Ft. GFA

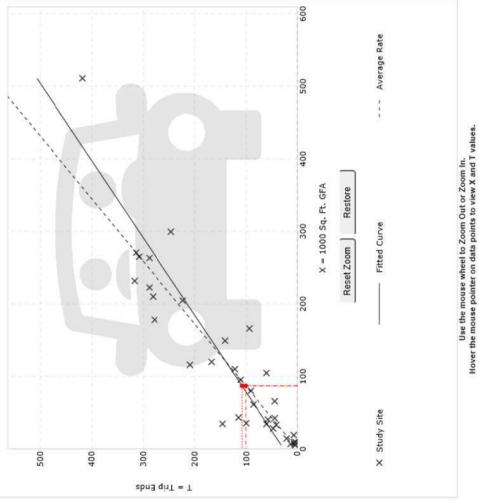
Time Period:

Weekday

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

General Urban/Suburban

Trip Type:


Vehicle

Setting/Location:

Avg. 1000 Sq. Ft. GFA:

117

Number of Studies:

Average Rate: 101 (Total), 87 (Entry), 14 (Exit) Fitted Curve: 108 (Total), 93 (Entry), 15 (Exit)

Directional Distribution: 86% entering, 14% exiting

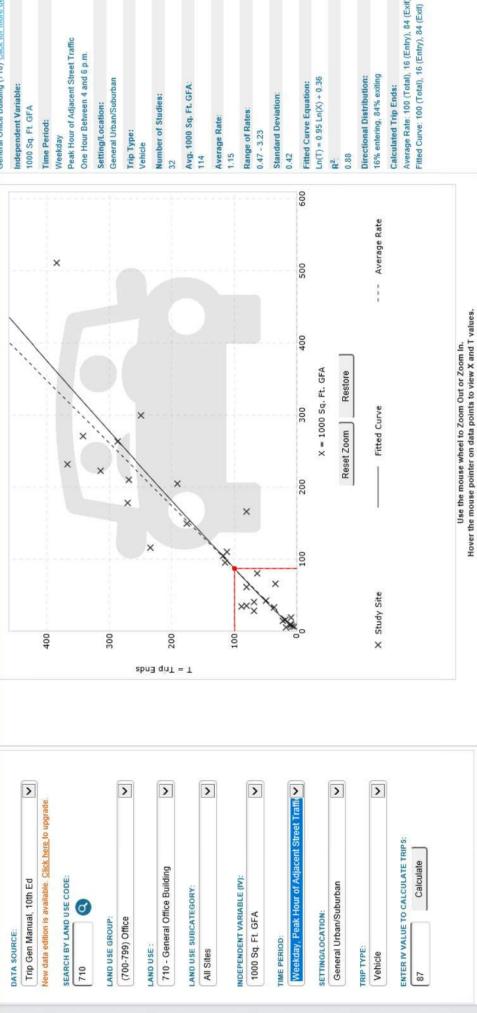
0.85

Calculated Trip Ends:

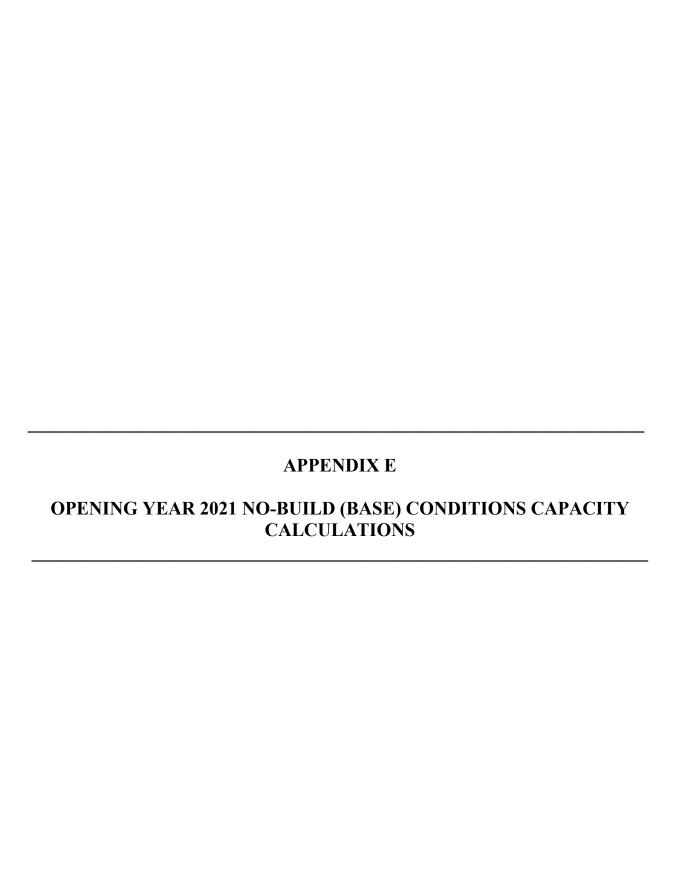
Fitted Curve Equation: T = 0.94(X) + 26.49

Standard Deviation:

0.47


Range of Rates:

0.37 - 4.23


Average Rate:

1.16

Graph Look Up

General Omce building (710) Click for more detail Average Rate: 100 (Total), 16 (Entry), 84 (Exit) Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m. 16% entering, 84% exiting General Urban/Suburban Ln(T) = 0.95 Ln(X) + 0.36Directional Distribution: Fitted Curve Equation: Independent Variable: Avg. 1000 Sq. Ft. GFA: Calculated Trip Ends: Number of Studies: Standard Deviation: Setting/Location: 1000 Sq. Ft. GFA Range of Rates: Average Rate: Time Period: Trip Type: 0.47 - 3.23 Weekday Vehicle 1.15 0.42 0.88

	۶	→	•	•	-	•	4	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		ሻ	∱ ∱			र्स	7	ሻ	र्स	7
Traffic Volume (veh/h)	154	273	2	118	651	582	2	20	22	443	69	163
Future Volume (veh/h)	154	273	2	118	651	582	2	20	22	443	69	163
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.96	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1904	1769	1769	1864	1879	1879	1781	1781	1932	1934	1919	2042
Adj Flow Rate, veh/h	159	281	2	122	671	600	2	21	23	508	0	168
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	5	14	14	5	4	4	21	21	11	3	4	1
Cap, veh/h	189	1642	12	151	827	729	7	77	214	628	0	471
Arrive On Green	0.10	0.48	0.48	0.09	0.46	0.46	0.05	0.05	0.05	0.17	0.00	0.17
Sat Flow, veh/h	1813	3420	24	1776	1793	1581	154	1619	1567	3683	0	1703
Grp Volume(v), veh/h	159	138	145	122	668	603	23	0	23	508	0	168
Grp Sat Flow(s),veh/h/ln	1813	1680	1764	1776	1785	1589	1774	0	1567	1842	0	1703
Q Serve(g_s), s	9.6	5.2	5.2	7.5	35.7	36.6	1.4	0.0	1.4	14.7	0.0	8.8
Cycle Q Clear(g_c), s	9.6	5.2	5.2	7.5	35.7	36.6	1.4	0.0	1.4	14.7	0.0	8.8
Prop In Lane	1.00		0.01	1.00		0.99	0.09		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	189	807	847	151	823	732	85	0	214	628	0	471
V/C Ratio(X)	0.84	0.17	0.17	0.81	0.81	0.82	0.27	0.00	0.11	0.81	0.00	0.36
Avail Cap(c_a), veh/h	229	807	847	272	837	745	112	0	238	764	0	534
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	48.8	16.3	16.3	49.8	25.8	26.0	51.0	0.0	42.3	44.3	0.0	32.4
Incr Delay (d2), s/veh	20.4	0.4	0.3	9.7	7.9	9.4	1.7	0.0	0.2	5.4	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.3	2.0	2.1	3.7	16.2	15.1	0.7	0.0	0.6	7.2	0.0	3.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	69.2	16.7	16.7	59.5	33.6	35.4	52.7	0.0	42.5	49.7	0.0	32.8
LnGrp LOS	Е	В	В	Е	С	D	D	Α	D	D	Α	С
Approach Vol, veh/h		442			1393			46			676	
Approach Delay, s/veh		35.6			36.7			47.6			45.5	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	17.6	57.1		11.3	15.4	59.3		24.9				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	14.0	52.0		7.0	17.0	49.0		23.0				
Max Q Clear Time (g_c+l1), s	11.6	38.6		3.4	9.5	7.2		16.7				
Green Ext Time (p_c), s	0.1	12.5		0.0	0.2	7.3		1.7				
Intersection Summary												
HCM 6th Ctrl Delay			39.0									
HCM 6th LOS			39.0 D									
Notes												

	→	•	•	←	4	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LUIT	YVDL	↑	₩.	אטוז
Traffic Volume (veh/h)	420	61	79	748	4	7
Future Volume (veh/h)	420	61	79	748	4	7
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1731	1731	1744	1909	2018	2018
•						
Adj Flow Rate, veh/h	433	63	81	771	4	7
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	11	11	13	2	0	0
Cap, veh/h	1189	172	128	2374	9	16
Arrive On Green	0.41	0.41	0.08	0.65	0.02	0.02
Sat Flow, veh/h	2970	417	1661	3723	599	1048
Grp Volume(v), veh/h	246	250	81	771	12	0
Grp Sat Flow(s),veh/h/ln	1645	1656	1661	1814	1797	0
Q Serve(g_s), s	3.8	3.8	1.7	3.4	0.2	0.0
Cycle Q Clear(g_c), s	3.8	3.8	1.7	3.4	0.2	0.0
Prop In Lane	0.0	0.25	1.00	0.7	0.33	0.58
Lane Grp Cap(c), veh/h	678	683	128	2374	28	0.50
V/C Ratio(X)	0.36	0.37	0.63	0.32	0.43	0.00
Avail Cap(c_a), veh/h	1764	1776	1005	6684	543	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	7.4	7.4	16.3	2.8	17.7	0.0
Incr Delay (d2), s/veh	0.3	0.3	5.1	0.1	9.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.9	0.9	0.7	0.2	0.2	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	7.7	7.7	21.4	2.8	27.6	0.0
LnGrp LOS	Α	Α	С	A	С	A
Approach Vol, veh/h	496			852	12	
• •	7.7			4.6	27.6	
Approach Delay, s/veh					27.0 C	
Approach LOS	Α			Α	C	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	8.8	21.0		6.6		29.8
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	22.0	39.0		11.0		67.0
Max Q Clear Time (g_c+l1), s	3.7	5.8		2.2		5.4
Green Ext Time (p_c), s	0.2	7.9		0.0		17.1
Intersection Summary						
HCM 6th Ctrl Delay			5.9			
HCM 6th LOS			A			
TIOW OUT LOS						
Notes						

	→	\rightarrow	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ħβ		ሻ	^	ሻ	7	
Traffic Volume (veh/h)	470	160	51	702	18	3	
Future Volume (veh/h)	470	160	51	702	18	3	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1716	1716	1939	1879	2018	2018	
Adj Flow Rate, veh/h	500	170	54	747	19	3	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	12	12	0	4	0	0	
Cap, veh/h	1151	389	103	2437	52	46	
Arrive On Green	0.48	0.48	0.06	0.68	0.03	0.03	
Sat Flow, veh/h	2478	809	1847	3665	1922	1710	
Grp Volume(v), veh/h	340	330	54	747	19	3	
Grp Sat Flow(s),veh/h/ln	1630	1571	1847	1785	1922	1710	
Q Serve(g_s), s	5.6	5.7	1.2	3.5	0.4	0.1	
Cycle Q Clear(g_c), s	5.6	5.7	1.2	3.5	0.4	0.1	
Prop In Lane		0.51	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	785	756	103	2437	52	46	
V/C Ratio(X)	0.43	0.44	0.52	0.31	0.37	0.06	
Avail Cap(c_a), veh/h	1895	1826	671	5966	419	373	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	7.0	7.0	19.0	2.6	19.7	19.6	
Incr Delay (d2), s/veh	0.4	0.4	4.1	0.1	4.3	0.6	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.3	1.3	0.5	0.3	0.2	0.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	7.4	7.4	23.0	2.7	24.0	20.2	
LnGrp LOS	Α	Α	С	Α	С	С	
Approach Vol, veh/h	670			801	22		
Approach Delay, s/veh	7.4			4.1	23.5		
Approach LOS	Α			Α	С		
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	8.3	25.9				34.2	7.1
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	15.0	48.0				69.0	9.0
Max Q Clear Time (g_c+l1), s	3.2	7.7				5.5	2.4
Green Ext Time (p_c), s	0.1	12.2				16.5	0.0
· '						. 5.0	
Intersection Summary							
HCM 6th Ctrl Delay			5.9				
HCM 6th LOS			Α				

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT	SBR 163 163 1900 13 85 1 No 9 0.97 1%
Traffic Volume (vph) 154 273 2 118 651 582 2 20 22 443 69 Future Volume (vph) 154 273 2 118 651 582 2 20 22 443 69 Ideal Flow (vphpl) 1900	163 163 1900 13 85 1 No 9 0.97 1%
Traffic Volume (vph) 154 273 2 118 651 582 2 20 22 443 69 Future Volume (vph) 154 273 2 118 651 582 2 20 22 443 69 Ideal Flow (vphpl) 1900	163 163 1900 13 85 1 No 9 0.97 1%
Future Volume (vph) 154 273 2 118 651 582 2 20 22 443 69 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Width (ft) 10 12 12 10 12 12 12 12	163 1900 13 85 1 No 9 0.97 1%
Ideal Flow (vphpl)	1900 13 85 1 No 9 0.97 1%
Lane Width (ft) 10 12 12 10 12 12 12 12 12 12 12 11 11 Grade (%) -2% -1% -1% -5% -2% Storage Length (ft) 580 0 100 0 0 0 0 0 Storage Lanes 1 0 1 0 0 0 0 0 0 Taper Length (ft) 25 25 25 25 25 25 Right Turn on Red No No No No No No 10 25 <t< td=""><td>13 85 1 No 9 0.97 1%</td></t<>	13 85 1 No 9 0.97 1%
Grade (%) -2% -1% -5% -2% Storage Length (ft) 580 0 100 0 0 0 0 0 Storage Lanes 1 0 1 0 0 0 1 1 Taper Length (ft) 25 25 25 25 25 25 Right Turn on Red No No No No No No No No No Link Speed (mph) 35 35 25	85 1 No 9 0.97 1%
Storage Length (ft) 580 0 100 0 0 0 0 0 0 0	9 0.97 1%
Storage Lanes	9 0.97 1%
Taper Length (ft) 25 25 25 25 Right Turn on Red No So 25 258 258 258 258 258 10 10 No 10 7.0	9 0.97 1%
Right Turn on Red No No No No Link Speed (mph) 35 35 25 25 25 Link Distance (ft) 1023 612 255 258 258 Travel Time (s) 19.9 11.9 7.0 7.0 7.0 Confl. Peds. (#/hr) 3 3 3 9 1 1 Peak Hour Factor 0.97 <td< td=""><td>9 0.97 1%</td></td<>	9 0.97 1%
Link Speed (mph) 35 35 25 25 Link Distance (ft) 1023 612 255 258 Travel Time (s) 19.9 11.9 7.0 7.0 Confl. Peds. (#/hr) 3 3 3 9 1 1 Peak Hour Factor 0.97	9 0.97 1%
Link Distance (ft) 1023 612 255 258 Travel Time (s) 19.9 11.9 7.0 7.0 Confl. Peds. (#/hr) 3 3 3 9 1 1 Peak Hour Factor 0.97 0	0.97 1%
Travel Time (s) 19.9 11.9 7.0 7.0 Confl. Peds. (#/hr) 3 3 3 3 9 1 1 Peak Hour Factor 0.97	0.97 1%
Confl. Peds. (#/hr) 3 3 3 3 9 1 1 Peak Hour Factor 0.97	0.97 1%
Peak Hour Factor 0.97	0.97 1%
Heavy Vehicles (%) 5% 14% 0% 5% 4% 7% 0% 21% 11% 3% 4%	1%
Shared Lane Traffic (%) 43% Lane Group Flow (vph) 159 283 0 122 1271 0 0 23 23 260 268 Number of Detectors 1	
Lane Group Flow (vph) 159 283 0 122 1271 0 0 23 23 260 268 Number of Detectors 1	
Number of Detectors 1	168
Detector Template Left Left Leading Detector (ft) 40 231 40 231 20 40 40 40 40 Trailing Detector (ft) 0 225 0 225 0	1
Leading Detector (ft) 40 231 40 231 20 40 40 40 40 Trailing Detector (ft) 0 225 0 225 0	·
Trailing Detector (ft) 0 225 0 225 0 0 0 0 0 0 Detector 1 Position(ft) 0 225 0 225 0 0 0 0 0 0 Detector 1 Size(ft) 40 6 40 6 20 40 40 40 40 Detector 1 Type CI+Ex CI+Ex </td <td>40</td>	40
Detector 1 Position(ft) 0 225 0 225 0 0 0 0 0 0 Detector 1 Size(ft) 40 6 40 6 20 40 40 40 40 Detector 1 Type CI+Ex CI+Ex </td <td>0</td>	0
Detector 1 Size(ft) 40 6 40 6 20 40 40 40 40 Detector 1 Type CI+Ex CI+Ex <td>0</td>	0
Detector 1 Type CI+Ex CI	40
Detector 1 Channel	CI+Ex
DELECTOR 1 FYLERIA (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
	pm+ov
Protected Phases 1 6 5 2 4 4 5 8 8	1
Permitted Phases 4	8
Detector Phase 1 6 5 2 4 4 5 8 8	1
Switch Phase	
Minimum Initial (s) 7.0 15.0 7.0 15.0 7.0 7.0 7.0 7.0 7.0	7.0
Minimum Split (s) 13.0 37.0 13.0 13.0 13.0 28.0 28.0	13.0
Total Split (s) 20.0 55.0 23.0 58.0 13.0 13.0 23.0 29.0 29.0	20.0
Total Split (%) 16.7% 45.8% 19.2% 48.3% 10.8% 10.8% 19.2% 24.2% 24.2%	16.7%
Maximum Green (s) 14.0 49.0 17.0 52.0 7.0 7.0 17.0 23.0 23.0	14.0
Yellow Time (s) 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0
All-Red Time (s) 3.0 2.0 3.0 3.0 3.0 3.0 3.0	3.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0	6.0
Lead/Lag Lead Lag Lead Lag Lead	Lead
Lead-Lag Optimize?	
Vehicle Extension (s) 3.0 6.0 3.0 3.0 3.0 3.0 3.0	3.0
Recall Mode None Min None None None None None None None	None
Walk Time (s) 11.0 11.0 4.0 4.0	INOILG
Flash Dont Walk (s) 20.0 20.0 18.0 18.0	140116

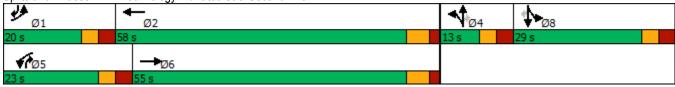
1: Technology Dr/Bates St & Second Ave

	•	→	•	•	←	•	•	†	~	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.79	0.20		0.63	0.90			0.22	0.10	0.83	0.85	0.32
Control Delay	76.8	20.4		62.6	38.6			58.7	23.7	66.7	68.2	28.1
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	76.8	20.4		62.6	38.6			58.7	23.7	66.7	68.2	28.1
Queue Length 50th (ft)	123	70		91	482			17	9	206	212	92
Queue Length 95th (ft)	#244	106		154	#635			46	24	#354	#366	150
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	212	1508		256	1539			106	289	350	354	533
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.75	0.19		0.48	0.83			0.22	0.08	0.74	0.76	0.32

Intersection Summary

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 109


Natural Cycle: 95

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2021 Base Lanes, Volumes, Timings

	-	\rightarrow	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑		ኘ	^	¥	, ,DIX
Traffic Volume (vph)	420	61	79	748	4	7
Future Volume (vph)	420	61	79	748	4	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	1%	12	10		-3%	12
Grade (%)	1%	^	000	-1%		^
Storage Length (ft)		0	200		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Right Turn on Red		Yes		_	_	No
Link Speed (mph)	35			35	25	
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)						1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	11%	4%	13%	2%	0%	0%
Shared Lane Traffic (%)						
Lane Group Flow (vph)	496	0	81	771	11	0
Number of Detectors	2		1	2	1	
Detector Template	_		Left		Left	
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
` ,	CI+Ex		Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Type Detector 1 Channel	CI+EX		CI+EX	CI+EX	UI+EX	
	0.0		0.0	0.0	0.0	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases						
Detector Phase	2		1	6	4	
Switch Phase				_		
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	45.0		28.0	73.0	17.0	
Total Split (%)	50.0%		31.1%	81.1%	18.9%	
Maximum Green (s)	39.0		22.0	67.0	11.0	
	4.0					
Yellow Time (s)			3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

	-	•	•	•	1	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Minimum Gap (s)	6.0		3.0	6.0	3.0		
Time Before Reduce (s)	15.0		5.0	15.0	5.0		
Time To Reduce (s)	15.0		5.0	15.0	5.0		
Recall Mode	Min		None	Min	None		
v/c Ratio	0.24		0.27	0.23	0.04		
Control Delay	7.4		17.9	1.4	18.6		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	7.4		17.9	1.4	18.6		
Queue Length 50th (ft)	27		15	0	2		
Queue Length 95th (ft)	98		56	67	16		
nternal Link Dist (ft)	897			943	166		
Turn Bay Length (ft)			200				
Base Capacity (vph)	2990		836	3557	479		
Starvation Cap Reductn	0		0	0	0		
Spillback Cap Reductn	0		0	0	0		
Storage Cap Reductn	0		0	0	0		
Reduced v/c Ratio	0.17		0.10	0.22	0.02		
ntersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 40.	.8						
Natural Cycle: 45							
Control Type: Actuated-Un	coordinated						
Splits and Phases: 2: Mi	ddle Access	& Second	d Ave				
ÿ1			Ø2				♦ Ø4
28 s		45 s					17 s
-							

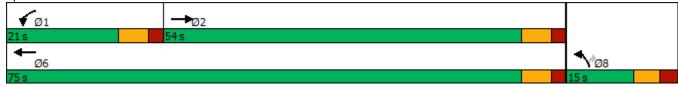
	→	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIT	YVDL	†	NDL Š	TVDIX
Traffic Volume (vph)	T № 470	160	51	TT 702	18	r 3
Future Volume (vph)	470	160	51	702	18	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	1%	12	10	-1%	-3%	12
Storage Length (ft)	1 70	0	230	-170	-3% 0	0
· · ·		0	230		1	1
Storage Lanes		U	25		25	ı
Taper Length (ft)		Vaa	25		25	Vaa
Right Turn on Red	25	Yes		25	0.5	Yes
Link Speed (mph)	35			35	25	
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1		• • •	19.0	5.2	• • •
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	12%	2%	0%	4%	0%	0%
Shared Lane Traffic (%)						
Lane Group Flow (vph)	670	0	54	747	19	3
Number of Detectors	2		1	2	1	1
Detector Template						
Leading Detector (ft)	261		40	261	40	40
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OI · LA		OI LX	OI LX	OI LX	OI LX
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
. ,	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)			0.0		0.0	0.0
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases						8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	54.0		21.0	75.0	15.0	15.0
Total Split (%)	60.0%		23.3%	83.3%	16.7%	16.7%
Maximum Green (s)	48.0		15.0	69.0	9.0	9.0
Yellow Time (s)	4.0		4.0	4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
	0.0		0.0	0.0	0.0	0.0
Lost Time Adjust (s)						
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?						

6: Western Access & Second Ave

	-	•	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0
Recall Mode	Min		None	Min	None	None
v/c Ratio	0.27		0.20	0.24	0.08	0.01
Control Delay	5.8		25.3	2.1	27.0	21.0
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	5.8		25.3	2.1	27.0	21.0
Queue Length 50th (ft)	0		9	0	3	0
Queue Length 95th (ft)	117		58	65	29	8
Internal Link Dist (ft)	593			897	112	
Turn Bay Length (ft)			230			
Base Capacity (vph)	2825		574	3394	373	336
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.24		0.09	0.22	0.05	0.01

Intersection Summary

Area Type: Other


Cycle Length: 90

Actuated Cycle Length: 48.9

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: Western Access & Second Ave

2021 Base Lanes, Volumes, Timings

Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT)	294 294 0 1.00 1.00	**************************************	1 1 0 0.97	WBL 24 24 0	WBT ↑↑ 291 291	WBR	NBL	NBT €Î	NBR	SBL	SBT	SBR
Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT)	294 294 0 1.00 1.00	880 880 0	1	24 24	291			- 41	#	-		
Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT)	294 0 1.00 1.00	880 0	1	24		~					ર્ન	7
Initial Q (Qb), veh Ped-Bike Adj(A_pbT)	0 1.00 1.00	0	0		204	355	4	163	133	411	18	73
Ped-Bike Adj(A_pbT)	1.00 1.00			0		355	4	163	133	411	18	73
, , , ,	1.00	1.00	0.97		0	0	0	0	0	0	0	0
		1.00		1.00		0.96	1.00		0.90	1.00		0.94
•	1001		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1001	No			No			No			No	
Adj Sat Flow, veh/h/ln	1964	1949	1949	1939	1819	1819	2067	2067	2067	1934	1979	1995
Adj Flow Rate, veh/h	316	946	1	26	313	382	4	175	143	456	0	78
	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	2	2	0	8	8	2	2	2	3	0	4
Cap, veh/h	356	1711	2	65	512	438	5	221	234	646	0	600
Arrive On Green	0.19	0.45	0.45	0.04	0.30	0.30	0.11	0.11	0.11	0.18	0.00	0.18
Sat Flow, veh/h	1870	3795	4	1847	1728	1479	46	2018	1573	3683	0	1584
Grp Volume(v), veh/h	316	461	486	26	313	382	179	0	143	456	0	78
	1870	1851	1948	1847	1728	1479	2064	0	1573	1842	0	1584
	17.3	19.1	19.1	1.4	16.3	25.7	8.9	0.0	9.0	12.2	0.0	3.4
10— /-	17.3	19.1	19.1	1.4	16.3	25.7	8.9	0.0	9.0	12.2	0.0	3.4
	1.00		0.00	1.00		1.00	0.02		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	356	835	878	65	512	438	226	0	234	646	0	600
	0.89	0.55	0.55	0.40	0.61	0.87	0.79	0.00	0.61	0.71	0.00	0.13
Avail Cap(c_a), veh/h	482	865	910	176	527	451	295	0	287	773	0	654
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
	41.4	21.1	21.1	49.5	31.7	35.0	45.5	0.0	42.2	40.7	0.0	22.2
	14.3	2.1	2.0	3.9	4.5	19.6	10.5	0.0	2.6	2.3	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.2	8.4	8.8	0.7	7.3	11.3	5.2	0.0	3.7	5.8	0.0	1.3
Unsig. Movement Delay, s/veh												
	55.7	23.2	23.1	53.3	36.2	54.6	56.1	0.0	44.8	43.0	0.0	22.3
LnGrp LOS	Е	С	С	D	D	D	Е	Α	D	D	Α	С
Approach Vol, veh/h		1263			721			322			534	
Approach Delay, s/veh		31.3			46.6			51.1			40.0	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
	26.0	37.0		17.5	9.7	53.3		24.4				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
	27.0	32.0		15.0	10.0	49.0		22.0				
• ()	19.3	27.7		11.0	3.4	21.1		14.2				
Green Ext Time (p_c), s	0.7	3.3		0.5	0.0	20.7		1.6				
Intersection Summary												
HCM 6th Ctrl Delay			39.0									
HCM 6th LOS			59.0 D									
Notes												

	→	•	•	←	4	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LUIX	YVDL	↑	₩.	HUIN
Traffic Volume (veh/h)	1128	17	18	365	43	57
Future Volume (veh/h)	1128	17	18	365	43	57
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1864	1864	1504	1849	2018	2018
•						
Adj Flow Rate, veh/h	1163	18	19	376	44	59
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2	29	6	0	0
Cap, veh/h	2149	33	32	2543	58	78
Arrive On Green	0.60	0.60	0.02	0.72	0.08	0.08
Sat Flow, veh/h	3664	55	1432	3606	748	1004
Grp Volume(v), veh/h	577	604	19	376	104	0
Grp Sat Flow(s),veh/h/ln	1771	1855	1432	1757	1769	0
Q Serve(g_s), s	11.6	11.6	0.8	2.0	3.5	0.0
Cycle Q Clear(g_c), s	11.6	11.6	0.8	2.0	3.5	0.0
Prop In Lane		0.03	1.00		0.42	0.57
Lane Grp Cap(c), veh/h	1066	1116	32	2543	137	0.57
V/C Ratio(X)	0.54	0.54	0.59	0.15	0.76	0.00
` ,	1466	1535	166	3665	439	0.00
Avail Cap(c_a), veh/h						
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	7.1	7.1	29.2	2.6	27.3	0.0
Incr Delay (d2), s/veh	0.4	0.4	15.7	0.0	8.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.2	3.3	0.4	0.3	1.7	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	7.5	7.5	45.0	2.6	35.5	0.0
LnGrp LOS	Α	Α	D	Α	D	Α
Approach Vol, veh/h	1181			395	104	
Approach Delay, s/veh	7.5			4.6	35.5	
Approach LOS	Α.			Α.	00.0	
Approach LOS					U	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	7.4	42.3		10.7		49.7
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	7.0	50.0		15.0		63.0
Max Q Clear Time (g_c+l1), s	2.8	13.6		5.5		4.0
Green Ext Time (p_c), s	0.0	22.7		0.2		6.9
Green Ext Time (p_c), s	0.0	22.1		0.2		0.9
Intersection Summary						
HCM 6th Ctrl Delay			8.6			
HCM 6th LOS			Α			
Notes						

	→	•	•	←	4	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†	LDIX	YVDL	↑	₩.	TVDIX	
Traffic Volume (veh/h)	1129	61	2	390	182	32	
Future Volume (veh/h)	1129	61	2	390	182	32	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1864	1864	1939	1864	2003	2018	
Adj Flow Rate, veh/h	1164	63	2	402	188	33	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	0.97	5	1	0.97	
Cap, veh/h	1999	108	5	2412	252	226	
Arrive On Green	0.58	0.58	0.00	0.68	0.13	0.13	
Sat Flow, veh/h	3511	185	1847	3635	1908	1710	
Grp Volume(v), veh/h	603	624	1047	402	188	33	
Grp Sat Flow(s),veh/h/ln	1771	1831	1847	1771	1908	1710	
Q Serve(g_s), s	13.8	13.8	0.1	2.6	6.1	1.1	
Cycle Q Clear(g_c), s	13.8	13.8	0.1	2.6	6.1	1.1	
Prop In Lane	4000	0.10	1.00	0440	1.00	1.00	
Lane Grp Cap(c), veh/h	1036	1071	5	2412	252	226	
V/C Ratio(X)	0.58	0.58	0.40	0.17	0.75	0.15	
Avail Cap(c_a), veh/h	1323	1367	144	3251	564	505	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	8.4	8.4	32.0	3.7	26.8	24.7	
Incr Delay (d2), s/veh	0.5	0.5	43.7	0.0	4.3	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.1	4.2	0.1	0.6	3.0	0.4	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	8.9	8.9	75.7	3.7	31.2	25.0	
LnGrp LOS	A	Α	E	Α	С	С	
Approach Vol, veh/h	1227			404	221		
Approach Delay, s/veh	8.9			4.1	30.3		
Approach LOS	Α			Α	С		
Timer - Assigned Phs	1	2				6	
Phs Duration (G+Y+Rc), s	6.2	43.6				49.8	
Change Period (Y+Rc), s	6.0	6.0				6.0	
Max Green Setting (Gmax), s	5.0	48.0				59.0	
Max Q Clear Time (g c+l1), s	2.1	15.8				4.6	
Green Ext Time (p_c), s	0.0	21.8				7.3	
Intersection Summary							
HCM 6th Ctrl Delay			10.4				
HCM 6th LOS			10.4 B				
			В				
Notes							

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

	۶	→	•	•	←	4	•	†	/	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		7	∱ ∱			ર્ન	7	7	4	7
Traffic Volume (vph)	294	880	1	24	291	355	4	163	133	411	18	73
Future Volume (vph)	294	880	1	24	291	355	4	163	133	411	18	73
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	12	12	10	12	12	12	12	12	11	11	13
Grade (%)		-2%			-1%			-5%			-2%	
Storage Length (ft)	580		0	100		0	0		0	0		85
Storage Lanes	1		0	1		0	0		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			No			No			No			No
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		1023			612			255			258	
Travel Time (s)		19.9			11.9			7.0			7.0	
Confl. Peds. (#/hr)	11		24	24		11	3		37	37		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	1%	2%	0%	0%	8%	5%	0%	2%	2%	3%	0%	4%
Shared Lane Traffic (%)										48%		
Lane Group Flow (vph)	316	947	0	26	695	0	0	179	143	230	231	78
Number of Detectors	1	1		1	1		1	1	1	1	1	1
Detector Template	Left						Left					
Leading Detector (ft)	40	231		40	231		20	40	40	40	40	40
Trailing Detector (ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Position(ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Size(ft)	40	6		40	6		20	40	40	40	40	40
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	5	8	8	1
Permitted Phases									4			8
Detector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase												
Minimum Initial (s)	7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	37.0		13.0	37.0		13.0	13.0	13.0	28.0	28.0	13.0
Total Split (s)	33.0	55.0		16.0	38.0		21.0	21.0	16.0	28.0	28.0	33.0
Total Split (%)	27.5%	45.8%		13.3%	31.7%		17.5%	17.5%	13.3%	23.3%	23.3%	27.5%
Maximum Green (s)	27.0	49.0		10.0	32.0		15.0	15.0	10.0	22.0	22.0	27.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min		None	Min		None	None	None	None	None	None
Walk Time (s)		11.0			11.0					4.0	4.0	
Flash Dont Walk (s)		20.0			20.0					18.0	18.0	

1: Technology Dr/Bates St & Second Ave

	•	→	•	•	←	•	4	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.86	0.66		0.20	0.97dr			0.76	0.45	0.81	0.80	0.12
Control Delay	65.7	29.9		55.2	53.0			69.4	27.0	67.5	67.0	19.2
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	65.7	29.9		55.2	53.0			69.4	27.0	67.5	67.0	19.2
Queue Length 50th (ft)	235	300		19	269			136	61	180	181	34
Queue Length 95th (ft)	#384	378		49	#366			#243	100	#307	#306	64
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	420	1628		156	905			264	339	330	333	683
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.75	0.58		0.17	0.77			0.68	0.42	0.70	0.69	0.11

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 110.4

Natural Cycle: 105

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2021 Base Lanes, Volumes, Timings

Timing Plan: PM Peak

	→	•	•	←	•	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDIN	VVDL	↑ ↑	NDL NDL	NOIN
Traffic Volume (vph)	T ₱ 1128	17	18	TT 365	T 43	57
			18	365	43	57 57
Future Volume (vph)	1128	17				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	12	12	12
Grade (%)	1%	0	000	-1%	-3%	_
Storage Length (ft)		0	200		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Right Turn on Red		Yes			_	No
Link Speed (mph)	35			35	25	
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)					1	7
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	10%	29%	6%	0%	0%
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1181	0	19	376	103	0
Number of Detectors	2		1	2	1	
Detector Template			Left		Left	
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel	OITEX		OITEX	OITEX	OITEX	
	0.0		0.0	0.0	0.0	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases						
Detector Phase	2		1	6	4	
Switch Phase			•			
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	56.0		13.0	69.0	21.0	
Total Split (%)	62.2%		14.4%	76.7%	23.3%	
Maximum Green (s)	50.0		7.0	63.0	15.0	
	4.0		3.5			
Yellow Time (s)				4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

	-	\rightarrow	•	•	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Minimum Gap (s)	6.0		3.0	6.0	3.0	
Time Before Reduce (s)	15.0		5.0	15.0	5.0	
Time To Reduce (s)	15.0		5.0	15.0	5.0	
Recall Mode	Min		None	Min	None	
v/c Ratio	0.48		0.15	0.14	0.41	
Control Delay	9.2		39.8	3.8	37.3	
Queue Delay	0.0		0.0	0.0	0.0	
Total Delay	9.2		39.8	3.8	37.3	
Queue Length 50th (ft)	101		8	24	43	
Queue Length 95th (ft)	281		32	46	101	
Internal Link Dist (ft)	897			943	166	
Turn Bay Length (ft)			200			
Base Capacity (vph)	2534		142	2935	398	
Starvation Cap Reductn	0		0	0	0	
Spillback Cap Reductn	0		0	0	0	
Storage Cap Reductn	0		0	0	0	
Reduced v/c Ratio	0.47		0.13	0.13	0.26	
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 70.	.5					
Natural Cycle: 60						
Control Type: Actuated-Un	coordinated					
0.19 1.50 0.44		0.0				
r'	ddle Access	& Secon	d Ave			
√ø1 →	3 2					
13 s 56 s						
4						

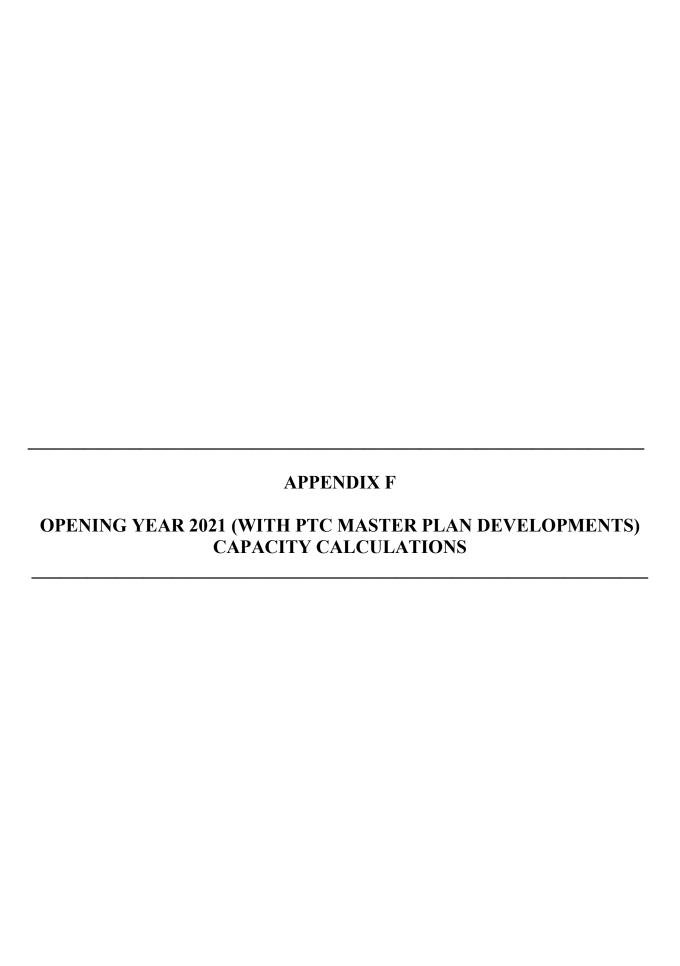
2021 Base Timing Plan: PM Peak Lanes, Volumes, Timings

	→	*	•	←	1	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑	ZDI(YVDL	↑ ↑	₩.	TADIX
Traffic Volume (vph)	1129	61	2	TT 390	182	32
Future Volume (vph)	1129	61	2	390	182	32
` ' '						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	12	12	12
Grade (%)	1%	_		-1%	-3%	_
Storage Length (ft)		0	230		0	0
Storage Lanes		0	1		1	1
Taper Length (ft)			25		25	
Right Turn on Red		Yes				Yes
Link Speed (mph)	35			35	25	
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1			19.0	5.2	
Confl. Peds. (#/hr)					3	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	0.97	5%	1%	0.97
	Z70	470	U70	5%	1 70	
Shared Lane Traffic (%)	4007	^	^	400	404	10%
Lane Group Flow (vph)	1227	0	2	402	191	30
Number of Detectors	2		1	2	1	1
Detector Template						
Leading Detector (ft)	261		40	261	40	40
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	255		0.0	255	0.0	0.0
Detector 2 Size(ft)	6			6 CL Ev		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases						8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
	54.0		11.0	65.0	25.0	25.0
Total Split (s)						
Total Split (%)	60.0%		12.2%	72.2%	27.8%	27.8%
Maximum Green (s)	48.0		5.0	59.0	19.0	19.0
Yellow Time (s)	4.0		4.0	4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead			
	Lug		_000			


Lanes, Volumes, Timings 6: Western Access & Second Ave

	-	•	•	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0
Recall Mode	Min		None	Min	None	None
v/c Ratio	0.56		0.02	0.18	0.59	0.10
Control Delay	10.0		37.5	5.4	36.7	11.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	10.0		37.5	5.4	36.7	11.4
Queue Length 50th (ft)	128		1	31	80	0
Queue Length 95th (ft)	317		8	60	163	23
Internal Link Dist (ft)	593			897	112	
Turn Bay Length (ft)			230			
Base Capacity (vph)	2354		119	2825	485	431
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.52		0.02	0.14	0.39	0.07
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 72	.9					

Natural Cycle: 60


Control Type: Actuated-Uncoordinated

Splits and Phases: 6: Western Access & Second Ave

Lanes, Volumes, Timings 2021 Base

Timing Plan: PM Peak

	•	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		ሻ	∱ ∱			र्स	7	ሻ	र्स	7
Traffic Volume (veh/h)	159	281	2	144	755	582	2	28	35	443	84	223
Future Volume (veh/h)	159	281	2	144	755	582	2	28	35	443	84	223
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.96	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1904	1769	1769	1864	1879	1879	1781	1781	1932	1934	1919	2042
Adj Flow Rate, veh/h	164	290	2	148	778	600	2	29	36	519	0	230
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	5	14	14	5	4	4	21	21	11	3	4	1
Cap, veh/h	192	1606	11	178	898	677	6	89	248	624	0	472
Arrive On Green	0.11	0.47	0.47	0.10	0.46	0.46	0.05	0.05	0.05	0.17	0.00	0.17
Sat Flow, veh/h	1813	3421	24	1776	1937	1460	115	1661	1564	3683	0	1703
Grp Volume(v), veh/h	164	142	150	148	716	662	31	0	36	519	0	230
Grp Sat Flow(s),veh/h/ln	1813	1680	1764	1776	1785	1611	1776	0	1564	1842	0	1703
Q Serve(g_s), s	10.3	5.7	5.7	9.5	41.5	43.3	1.9	0.0	2.3	15.8	0.0	13.1
Cycle Q Clear(g_c), s	10.3	5.7	5.7	9.5	41.5	43.3	1.9	0.0	2.3	15.8	0.0	13.1
Prop In Lane	1.00		0.01	1.00		0.91	0.06		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	192	789	828	178	828	747	95	0	248	624	0	472
V/C Ratio(X)	0.85	0.18	0.18	0.83	0.86	0.89	0.33	0.00	0.15	0.83	0.00	0.49
Avail Cap(c_a), veh/h	204	789	828	291	833	752	107	0	259	700	0	507
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	50.9	17.8	17.8	51.1	27.8	28.2	52.8	0.0	42.4	46.5	0.0	35.1
Incr Delay (d2), s/veh	27.0	0.4	0.4	10.0	11.0	14.0	2.0	0.0	0.3	7.7	0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.1	2.3	2.4	4.7	19.4	18.8	0.9	0.0	0.9	7.9	0.0	5.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	77.8	18.2	18.2	61.1	38.8	42.2	54.7	0.0	42.7	54.2	0.0	35.9
LnGrp LOS	Е	В	В	Е	D	D	D	Α	D	D	Α	D
Approach Vol, veh/h		456			1526			67			749	
Approach Delay, s/veh		39.6			42.4			48.3			48.6	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.3	59.7		12.2	17.6	60.3		25.6				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	13.0	54.0		7.0	19.0	48.0		22.0				
Max Q Clear Time (g_c+l1), s	12.3	45.3		4.3	11.5	7.7		17.8				
Green Ext Time (p_c), s	0.0	8.4		0.0	0.2	7.5		1.5				
Intersection Summary												
HCM 6th Ctrl Delay			43.8									
HCM 6th LOS			D									
Notes												

	-	•	•	←	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LUIX	YVDL	↑	₩.	HUIN
Traffic Volume (veh/h)	430	100	145	846	12	10
Future Volume (veh/h)	430	100	145	846	12	10
Initial Q (Qb), veh	0	0	0	040	0	0
	U	1.00	1.00	U	1.00	1.00
Ped-Bike Adj(A_pbT)	4.00			4.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	4704	4=44	No	No	0040
Adj Sat Flow, veh/h/ln	1731	1731	1744	1909	2018	2018
Adj Flow Rate, veh/h	443	103	149	872	12	10
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	11	11	13	2	0	0
Cap, veh/h	1058	244	199	2429	27	22
Arrive On Green	0.40	0.40	0.12	0.67	0.03	0.03
Sat Flow, veh/h	2740	612	1661	3723	952	794
Grp Volume(v), veh/h	273	273	149	872	23	0
Grp Sat Flow(s), veh/h/ln	1645	1621	1661	1814	1825	0
	4.8	4.8	3.4	4.2	0.5	0.0
Q Serve(g_s), s						
Cycle Q Clear(g_c), s	4.8	4.8	3.4	4.2	0.5	0.0
Prop In Lane		0.38	1.00		0.52	0.43
Lane Grp Cap(c), veh/h	656	646	199	2429	51	0
V/C Ratio(X)	0.42	0.42	0.75	0.36	0.45	0.00
Avail Cap(c_a), veh/h	1450	1429	1130	6213	460	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	8.6	8.6	16.9	2.9	19.0	0.0
Incr Delay (d2), s/veh	0.4	0.4	5.5	0.1	6.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.2	1.2	1.4	0.3	0.3	0.0
Unsig. Movement Delay, s/veh		1.2	1.7	0.0	0.0	0.0
		9.1	22.4	2.0	24.0	0.0
LnGrp Delay(d),s/veh	9.0			2.9	24.9	
LnGrp LOS	A	A	С	A	C	A
Approach Vol, veh/h	546			1021	23	
Approach Delay, s/veh	9.1			5.8	24.9	
Approach LOS	Α			Α	С	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	10.8	21.8		7.1		32.6
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	27.0	35.0		10.0		68.0
Max Q Clear Time (g_c+l1), s	5.4	6.8		2.5		6.2
Green Ext Time (p_c), s	0.5	8.3		0.0		20.4
Intersection Summary						
HCM 6th Ctrl Delay			7.2			
HCM 6th LOS			Α			
Notes						

	→	•	•	←	4	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ħβ		J.	^	J.	7	
Traffic Volume (veh/h)	509	242	149	710	30	13	
Future Volume (veh/h)	509	242	149	710	30	13	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1716	1716	1939	1879	2018	2018	
Adj Flow Rate, veh/h	541	257	159	755	32	14	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	12	12	0	4	0	0	
Cap, veh/h	1038	492	216	2564	90	80	
Arrive On Green	0.48	0.48	0.12	0.72	0.05	0.05	
Sat Flow, veh/h	2232	1017	1847	3665	1922	1710	
Grp Volume(v), veh/h	411	387	159	755	32	14	
Grp Sat Flow(s),veh/h/ln	1630	1533	1847	1785	1922	1710	
Q Serve(g_s), s	8.9	8.9	4.2	3.9	0.8	0.4	
Cycle Q Clear(g_c), s	8.9	8.9	4.2	3.9	0.8	0.4	
Prop In Lane		0.66	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	789	742	216	2564	90	80	
V/C Ratio(X)	0.52	0.52	0.74	0.29	0.35	0.17	
Avail Cap(c_a), veh/h	1373	1291	796	4964	263	234	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	9.1	9.1	21.8	2.6	23.6	23.4	
Incr Delay (d2), s/veh	0.5	0.6	4.8	0.1	2.4	1.0	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	2.4	2.3	1.9	0.4	0.4	0.2	
Jnsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	9.6	9.7	26.6	2.6	25.9	24.4	
LnGrp LOS	Α	Α	С	Α	С	С	
Approach Vol, veh/h	798			914	46		
Approach Delay, s/veh	9.7			6.8	25.5		
Approach LOS	Α			Α	С		
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	12.0	30.7				42.7	8.4
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	22.0	43.0				71.0	7.0
Max Q Clear Time (g_c+l1), s	6.2	10.9				5.9	2.8
Green Ext Time (p_c), s	0.4	13.8				16.8	0.0
u = 7·	0.7	10.0				10.0	0.0
ntersection Summary			0.0				
HCM 6th Ctrl Delay			8.6				
HCM 6th LOS			Α				

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

	۶	→	•	•	←	•	4	†	<i>></i>	/	↓	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† }		ች	† }			4	7	*	र्स	7
Traffic Volume (vph)	159	281	2	144	755	582	2	28	35	443	84	223
Future Volume (vph)	159	281	2	144	755	582	2	28	35	443	84	223
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	12	12	10	12	12	12	12	12	11	11	13
Grade (%)		-2%			-1%			-5%			-2%	
Storage Length (ft)	580		0	100		0	0		0	0		85
Storage Lanes	1		0	1		0	0		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			No			No			No			No
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		1023			612			255			258	
Travel Time (s)		19.9			11.9			7.0			7.0	
Confl. Peds. (#/hr)	3		3	3		3	9		1	1		9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	5%	14%	0%	5%	4%	7%	0%	21%	11%	3%	4%	1%
Shared Lane Traffic (%)										41%		
Lane Group Flow (vph)	164	292	0	148	1378	0	0	31	36	270	274	230
Number of Detectors	1	1		1	1		1	1	1	1	1	1
Detector Template	Left						Left					
Leading Detector (ft)	40	231		40	231		20	40	40	40	40	40
Trailing Detector (ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Position(ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Size(ft)	40	6		40	6		20	40	40	40	40	40
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	5	8	8	1
Permitted Phases									4			8
Detector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase												
Minimum Initial (s)	7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	37.0		13.0	37.0		13.0	13.0	13.0	28.0	28.0	13.0
Total Split (s)	19.0	54.0		25.0	60.0		13.0	13.0	25.0	28.0	28.0	19.0
Total Split (%)	15.8%	45.0%		20.8%	50.0%		10.8%	10.8%	20.8%	23.3%	23.3%	15.8%
Maximum Green (s)	13.0	48.0		19.0	54.0		7.0	7.0	19.0	22.0	22.0	13.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min		None	Min		None	None	None	None	None	None
Walk Time (s)		11.0			11.0					4.0	4.0	
Flash Dont Walk (s)		20.0			20.0					18.0	18.0	

1: Technology Dr/Bates St & Second Ave

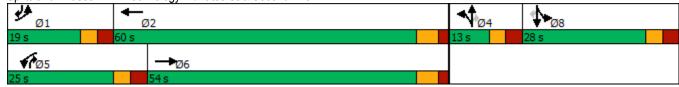
	۶	-	•	•	←	•	•	†	~	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.87	0.20		0.69	0.92			0.31	0.14	0.88	0.88	0.46
Control Delay	90.4	21.1		64.5	40.6			62.0	24.3	75.0	74.6	32.2
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	90.4	21.1		64.5	40.6			62.0	24.3	75.0	74.6	32.2
Queue Length 50th (ft)	128	74		111	533			24	15	217	221	135
Queue Length 95th (ft)	#263	110		179	#699			57	32	#385	#389	208
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	188	1443		274	1541			101	305	320	325	501
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.87	0.20		0.54	0.89			0.31	0.12	0.84	0.84	0.46

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 112.5


Natural Cycle: 105

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2021 Build (Combined)

Lanes, Volumes, Timings

Timing Plan: AM Peak

	-	*	•	←	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIN	7	↑ ↑	**	ADIX
Traffic Volume (vph)	430	100	145	846	12	10
Future Volume (vph)	430	100	145	846	12	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	1900	1300	1300	1300
Grade (%)	1%	12	10	-1%	-3%	12
Storage Length (ft)	1 /0	0	200	- 1 /0	-5 / ₀	0
Storage Lanes		0	1		1	0
Taper Length (ft)		U	25		25	U
Right Turn on Red		Yes	20		20	No
Link Speed (mph)	35	165		35	25	INU
	977			1023	25 246	
Link Distance (ft)						
Travel Time (s)	19.0			19.9	6.7	4
Confl. Peds. (#/hr)	0.07	0.07	0.07	0.07	0.07	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	11%	4%	13%	2%	0%	0%
Shared Lane Traffic (%)						
Lane Group Flow (vph)	546	0	149	872	22	0
Number of Detectors	2		1	2	1	
Detector Template			Left		Left	
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255		0.0	255	0.0	
Detector 2 Size(ft)	6			255		
. ,	CI+Ex			Cl+Ex		
Detector 2 Type Detector 2 Channel	UI+EX			UI+EX		
	0.0			0.0		
Detector 2 Extend (s)	0.0		D1	0.0	D4	
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases						
Detector Phase	2		1	6	4	
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	41.0		33.0	74.0	16.0	
Total Split (%)	45.6%		36.7%	82.2%	17.8%	
Maximum Green (s)	35.0		27.0	68.0	10.0	
Yellow Time (s)	4.0		3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag			Lead	0.0	0.0	
L-Gau/Lay	Lag		LEdu			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

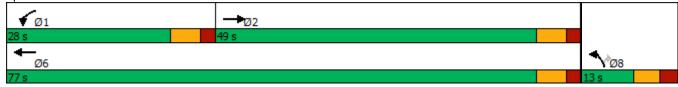
	-	•	•	•	4	/			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR			
Lead-Lag Optimize?									
Vehicle Extension (s)	3.0		3.0	3.0	3.0				
Minimum Gap (s)	6.0		3.0	6.0	3.0				
Time Before Reduce (s)	15.0		5.0	15.0	5.0				
Time To Reduce (s)	15.0		5.0	15.0	5.0				
Recall Mode	Min		None	Min	None				
/c Ratio	0.31		0.41	0.26	0.09				
Control Delay	9.4		20.9	1.2	24.0				
Queue Delay	0.0		0.0	0.0	0.0				
otal Delay	9.4		20.9	1.2	24.0				
Queue Length 50th (ft)	33		24	0	4				
Queue Length 95th (ft)	124		114	80	31				
nternal Link Dist (ft)	897			943	166				
urn Bay Length (ft)			200						
Base Capacity (vph)	2663		965	3473	417				
Starvation Cap Reductn	0		0	0	0				
Spillback Cap Reductn	0		0	0	0				
Storage Cap Reductn	0		0	0	0				
Reduced v/c Ratio	0.21		0.15	0.25	0.05				
ntersection Summary									
rea Type:	Other								
Cycle Length: 90									
Actuated Cycle Length: 45.	8								
Natural Cycle: 45									
Control Type: Actuated-Un	coordinated								
Splits and Phases: 2: Mi	ddle Access	& Second	d Ave						
√ Ø1		-	→ t	0 2				★ Ø4	
33 s			41 s					16 s	
← Ø6									

	→	•	•	←	1	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIK	7	†	i i	7
Traffic Volume (vph)	509	242	149	710	30	13
Future Volume (vph)	509	242	149	710	30	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	1900	12	12	12
Grade (%)	1%	12	10	-1%	-3%	14
Storage Length (ft)	1 /0	0	230	- 1 /0	-5 / ₀	0
Storage Lanes		0	230		1	1
Taper Length (ft)		U	25		25	
Right Turn on Red		Yes	20		2.5	Yes
Link Speed (mph)	35	1 63		35	25	163
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1			19.0	5.2	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	12%	2%	0.94	0.94 4%	0.94	0.94
	1Z%	۷%	U%	4%	U%	U%
Shared Lane Traffic (%)	700	0	450	755	20	4.4
Lane Group Flow (vph)	798	0	159	755	32	14
Number of Detectors	2		1	2	1	1
Detector Template	004		40	004	40	40
Leading Detector (ft)	261		40	261	40	40
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases						8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	49.0		28.0	77.0	13.0	13.0
Total Split (%)	54.4%		31.1%	85.6%	14.4%	14.4%
Maximum Green (s)	43.0		22.0	71.0	7.0	7.0
Yellow Time (s)	4.0		4.0	4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead	0.0	0.0	0.0
Lead-Lag Optimize?	Lag		Loud			

	-	•	€	•	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0
Recall Mode	Min		None	Min	None	None
v/c Ratio	0.49		0.49	0.25	0.16	0.07
Control Delay	11.1		32.0	2.4	36.0	19.5
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	11.1		32.0	2.4	36.0	19.5
Queue Length 50th (ft)	98		53	44	11	0
Queue Length 95th (ft)	168		135	61	44	18
Internal Link Dist (ft)	593			897	112	
Turn Bay Length (ft)			230			
Base Capacity (vph)	2289		645	3265	222	210
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.35		0.25	0.23	0.14	0.07

Intersection Summary

Area Type: Other


Cycle Length: 90

Actuated Cycle Length: 63.6

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

	۶	→	•	•	←	•	1	†	/	/		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	∱ }		*	↑ ↑			4	7	۲	4	7
Traffic Volume (veh/h)	322	927	1	29	310	355	4	208	210	411	21	84
Future Volume (veh/h)	322	927	1	29	310	355	4	208	210	411	21	84
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.96	1.00		0.92	1.00		0.93
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1964	1949	1949	1939	1819	1819	2067	2067	2067	1934	1979	1995
Adj Flow Rate, veh/h	346	997	1	31	333	382	4	224	226	458	0	90
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	2	2	0	8	8	2	2	2	3	0	4
Cap, veh/h	378	1680	2	71	481	411	5	285	294	620	0	608
Arrive On Green	0.20	0.44	0.44	0.04	0.28	0.28	0.14	0.14	0.14	0.17	0.00	0.17
Sat Flow, veh/h	1870	3795	4	1847	1728	1475	36	2029	1613	3683	0	1579
Grp Volume(v), veh/h	346	486	512	31	333	382	228	0	226	458	0	90
Grp Sat Flow(s),veh/h/ln	1870	1851	1948	1847	1728	1475	2065	0	1613	1842	0	1579
Q Serve(g_s), s	20.7	22.7	22.7	1.9	19.6	28.7	12.2	0.0	15.3	13.5	0.0	4.3
Cycle Q Clear(g_c), s	20.7	22.7	22.7	1.9	19.6	28.7	12.2	0.0	15.3	13.5	0.0	4.3
Prop In Lane	1.00		0.00	1.00		1.00	0.02		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	378	819	862	71	481	411	290	0	294	620	0	608
V/C Ratio(X)	0.91	0.59	0.59	0.44	0.69	0.93	0.79	0.00	0.77	0.74	0.00	0.15
Avail Cap(c_a), veh/h	426	819	862	211	485	414	290	0	294	710	0	647
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	44.5	24.0	24.0	53.6	36.8	40.0	47.4	0.0	44.7	45.0	0.0	23.9
Incr Delay (d2), s/veh	22.5	2.6	2.5	4.2	6.9	29.1	13.4	0.0	11.8	3.5	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.8	10.2	10.7	0.9	9.1	13.5	7.4	0.0	7.1	6.5	0.0	1.7
Unsig. Movement Delay, s/veh	l											
LnGrp Delay(d),s/veh	67.1	26.6	26.5	57.8	43.7	69.2	60.8	0.0	56.5	48.6	0.0	24.1
LnGrp LOS	Е	С	С	Е	D	Е	Е	Α	Е	D	Α	С
Approach Vol, veh/h		1344			746			454			548	
Approach Delay, s/veh		37.0			57.3			58.7			44.5	
Approach LOS		D			Ε			Е			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	29.1	37.8		22.0	10.4	56.5		25.2				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	26.0	32.0		16.0	13.0	45.0		22.0				
Max Q Clear Time (g_c+l1), s	22.7	30.7		17.3	3.9	24.7		15.5				
Green Ext Time (p_c), s	0.4	1.0		0.0	0.0	16.5		1.4				
Intersection Summary												
HCM 6th Ctrl Delay			46.4									
HCM 6th LOS			D									
Notes												

	→	•	•	←	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†		ኘ	↑ ↑	¥	HUIT
Traffic Volume (veh/h)	1187	24	30	383	90	73
Future Volume (veh/h)	1187	24	30	383	90	73
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1864	1864	1504	1849	2018	2018
Adj Flow Rate, veh/h	1224	25	31	395	93	75
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2	29	6	0.97	0.97
•	2036	42	29 47		120	97
Cap, veh/h				2450		
Arrive On Green	0.57	0.57	0.03	0.70	0.12	0.12
Sat Flow, veh/h	3643	72	1432	3606	994	802
Grp Volume(v), veh/h	611	638	31	395	169	0
Grp Sat Flow(s),veh/h/ln	1771	1851	1432	1757	1807	0
Q Serve(g_s), s	14.8	14.8	1.4	2.5	6.0	0.0
Cycle Q Clear(g_c), s	14.8	14.8	1.4	2.5	6.0	0.0
Prop In Lane		0.04	1.00		0.55	0.44
Lane Grp Cap(c), veh/h	1016	1062	47	2450	219	0
V/C Ratio(X)	0.60	0.60	0.66	0.16	0.77	0.00
Avail Cap(c_a), veh/h	1256	1313	174	3236	471	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	9.2	9.2	31.6	3.4	28.1	0.00
Incr Delay (d2), s/veh	0.6	0.6	14.6	0.0	5.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
• ()	4.6		0.0		2.9	0.0
%ile BackOfQ(50%),veh/ln		4.8	0.7	0.6	2.9	0.0
Unsig. Movement Delay, s/veh		0.7	16.1	2.4	22.0	0.0
LnGrp Delay(d),s/veh	9.7	9.7	46.1	3.4	33.9	0.0
LnGrp LOS	A	A	D	A	C	A
Approach Vol, veh/h	1249			426	169	
Approach Delay, s/veh	9.7			6.5	33.9	
Approach LOS	Α			Α	С	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	8.2	43.9		14.0		52.0
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	8.0	46.8		17.2		60.8
Max Q Clear Time (g_c+l1), s	3.4	16.8		8.0		4.5
Green Ext Time (p_c), s	0.0	21.0		0.4		7.2
Intersection Summary						
HCM 6th Ctrl Delay			11.2			
HCM 6th LOS			11.2 B			
			D			
Notes						

	-	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†	LDIX	ነ	↑	¥	7	
Traffic Volume (veh/h)	1136	76	20	437	251	91	
Future Volume (veh/h)	1136	76	20	437	251	91	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1864	1864	1939	1864	2003	2018	
Adj Flow Rate, veh/h	1171	78	21	451	259	94	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	0.57	5	1	0.57	
Cap, veh/h	1834	122	44	2318	331	296	
Arrive On Green	0.54	0.54	0.02	0.65	0.17	0.17	
Sat Flow, veh/h	3464	224	1847	3635	1908	1710	
·							
Grp Volume(v), veh/h	615	634	21	451	259	94	
Grp Sat Flow(s), veh/h/ln	1771	1824	1847	1771	1908	1710	
Q Serve(g_s), s	16.9	16.9	0.8	3.5	9.0	3.3	
Cycle Q Clear(g_c), s	16.9	16.9	0.8	3.5	9.0	3.3	
Prop In Lane	004	0.12	1.00	00.10	1.00	1.00	
Lane Grp Cap(c), veh/h	964	993	44	2318	331	296	
V/C Ratio(X)	0.64	0.64	0.47	0.19	0.78	0.32	
Avail Cap(c_a), veh/h	1145	1179	133	2849	603	540	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	11.1	11.1	33.5	4.8	27.5	25.2	
Incr Delay (d2), s/veh	0.9	0.9	7.7	0.0	4.1	0.6	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	5.6	5.8	0.4	0.9	4.4	1.4	
Unsig. Movement Delay, s/veh	1						
LnGrp Delay(d),s/veh	12.0	12.0	41.2	4.8	31.6	25.8	
LnGrp LOS	В	В	D	Α	С	С	
Approach Vol, veh/h	1249			472	353		
Approach Delay, s/veh	12.0			6.4	30.1		
Approach LOS	В			Α	С		
Timer - Assigned Phs	1	2				6	
Phs Duration (G+Y+Rc), s	7.7	43.9				51.5	
Change Period (Y+Rc), s	6.0	6.0				6.0	
Max Green Setting (Gmax), s	5.0	45.0				56.0	
Max Q Clear Time (g_c+I1), s	2.8	18.9				5.5	
Green Ext Time (p_c), s	0.0	19.0				8.3	
Intersection Summary							
HCM 6th Ctrl Delay			13.8				
HCM 6th LOS			В				
Notes							

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

	۶	→	•	•	←	•	4	†	<i>></i>	/	↓	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† Ъ		ሻ	↑ Ъ			4	7	ሻ	4	7
Traffic Volume (vph)	322	927	1	29	310	355	4	208	210	411	21	84
Future Volume (vph)	322	927	1	29	310	355	4	208	210	411	21	84
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	12	12	10	12	12	12	12	12	11	11	13
Grade (%)		-2%			-1%			-5%			-2%	
Storage Length (ft)	580		0	100		0	0		0	0		85
Storage Lanes	1		0	1		0	0		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			No			No			No			No
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		1023			612			255			258	
Travel Time (s)		19.9			11.9			7.0			7.0	
Confl. Peds. (#/hr)	11		24	24		11	3		37	37		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	1%	2%	0%	0%	8%	5%	0%	2%	2%	3%	0%	4%
Shared Lane Traffic (%)										48%		
Lane Group Flow (vph)	346	998	0	31	715	0	0	228	226	230	235	90
Number of Detectors	1	1		1	1		1	1	1	1	1	1
Detector Template	Left						Left					
Leading Detector (ft)	40	231		40	231		20	40	40	40	40	40
Trailing Detector (ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Position(ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Size(ft)	40	6		40	6		20	40	40	40	40	40
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	5	8	8	1
Permitted Phases									4			8
Detector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase												
Minimum Initial (s)	7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	37.0		13.0	37.0		13.0	13.0	13.0	28.0	28.0	13.0
Total Split (s)	32.0	51.0		19.0	38.0		22.0	22.0	19.0	28.0	28.0	32.0
Total Split (%)	26.7%	42.5%		15.8%	31.7%		18.3%	18.3%	15.8%	23.3%	23.3%	26.7%
Maximum Green (s)	26.0	45.0		13.0	32.0		16.0	16.0	13.0	22.0	22.0	26.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			Lead
Lead-Lag Optimize?												2.5
Vehicle Extension (s)	3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min		None	Min		None	None	None	None	None	None
Walk Time (s)		11.0			11.0					4.0	4.0	
Flash Dont Walk (s)		20.0			20.0					18.0	18.0	

1: Technology Dr/Bates St & Second Ave

	•	→	•	1	←	•	•	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.93	0.72		0.20	0.97dr			0.88	0.63	0.82	0.83	0.14
Control Delay	77.1	33.9		52.7	56.9			81.8	30.3	70.4	71.0	20.0
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	77.1	33.9		52.7	56.9			81.8	30.3	70.4	71.0	20.0
Queue Length 50th (ft)	266	338		23	279			176	97	180	184	40
Queue Length 95th (ft)	#452	430		54	#382			#324	144	#307	#314	73
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	385	1441		193	863			268	394	313	317	644
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.90	0.69		0.16	0.83			0.85	0.57	0.73	0.74	0.14

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 114.6

Natural Cycle: 105

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

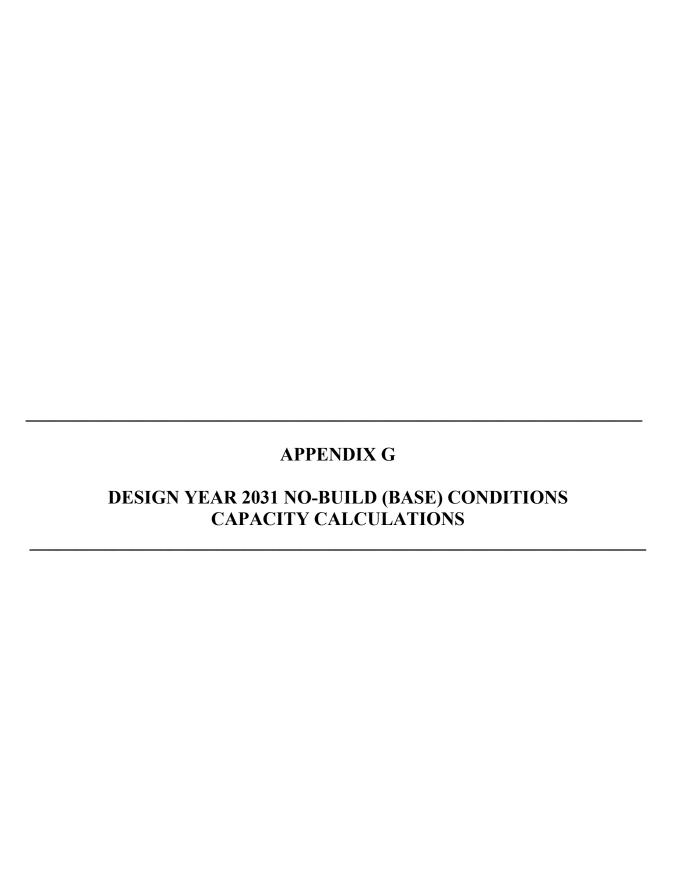
Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2021 Build (Combined)

Lanes, Volumes, Timings

Timing Plan: PM Peak

	-	•	•	←	•	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ Ъ	LDIX	YVDL	↑ ↑	NDL NDL	NUN
	T № 1187	24	30	TT 383	'T' 90	73
Traffic Volume (vph)	1187	24	30	383	90	73
Future Volume (vph)						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	12	12	12
Grade (%)	1%			-1%	-3%	
Storage Length (ft)		0	200		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Right Turn on Red		Yes				No
Link Speed (mph)	35			35	25	
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)					1	7
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	10%	29%	6%	0.37	0.57
Shared Lane Traffic (%)	Z /0	10 /0	23/0	0 /0	U /0	0 /0
` ,	1249	0	31	395	168	0
Lane Group Flow (vph)		U				U
Number of Detectors	2		1	2	1	
Detector Template			Left		Left	
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	Cl+Ex		Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255		0.0	255	0.0	
Detector 2 Size(ft)	6			255		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	0.0			0.0		
Detector 2 Extend (s)	0.0		.	0.0		
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases						
Detector Phase	2		1	6	4	
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	52.8		14.0	66.8	23.2	
Total Split (%)	58.7%		15.6%	74.2%	25.8%	
Maximum Green (s)	46.8		8.0	60.8	17.2	
			3.5			
Yellow Time (s)	4.0			4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead			


Lanes, Volumes, Timings 2: Middle Access & Second Ave

	→	•	•	←	•	<i>></i>	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Minimum Gap (s)	6.0		3.0	6.0	3.0		
Time Before Reduce (s)	15.0		5.0	15.0	5.0		
Time To Reduce (s)	15.0		5.0	15.0	5.0		
Recall Mode	Min		None	Min	None		
v/c Ratio	0.59		0.26	0.17	0.58		
Control Delay	12.3		41.8	5.0	39.1		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	12.3		41.8	5.0	39.1		
Queue Length 50th (ft)	137		13	31	68		
Queue Length 95th (ft)	337		45	54	150		
Internal Link Dist (ft)	897			943	166		
Turn Bay Length (ft)			200				
Base Capacity (vph)	2200		140	2791	402		
Starvation Cap Reductn	0		0	0	0		
Spillback Cap Reductn	0		0	0	0		
Storage Cap Reductn	0		0	0	0		
Reduced v/c Ratio	0.57		0.22	0.14	0.42		
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 76	.2						
Natural Cycle: 60							
Control Type: Actuated-Un	coordinated						
Colita and Dhases O. M.	ddla	0 Cocca-l	۸۰۰				
Splits and Phases: 2: Mi	ddle Access	a Second	Ave				т.
√ø1 −	Ø2						↑ ø4
14 s 52.8	S						23.2 s
← Ø6							
66.8 s							

	-	•	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		ኘ	↑ ↑	¥	7
Traffic Volume (vph)	1136	76	20	437	251	91
Future Volume (vph)	1136	76	20	437	251	91
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	1%	12	10	-1%	-3%	12
	1 /0	٥	230	-1/0		0
Storage Length (ft)		0	230		0	1
Storage Lanes		U	25		25	
Taper Length (ft)		Vaa	25		25	Vaa
Right Turn on Red	٥٢	Yes		٥٢	٥٢	Yes
Link Speed (mph)	35			35	25	
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1			19.0	5.2	
Confl. Peds. (#/hr)					3	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	0%	5%	1%	0%
Shared Lane Traffic (%)						10%
Lane Group Flow (vph)	1249	0	21	451	268	85
Number of Detectors	2		1	2	1	1
Detector Template						
Leading Detector (ft)	261		40	261	40	40
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	OI LX		OI ' LX	OI / LX	OI · LX	OI LX
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
• • • • • • • • • • • • • • • • • • • •			0.0		0.0	0.0
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases						8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	51.0		11.0	62.0	28.0	28.0
Total Split (%)	56.7%		12.2%	68.9%	31.1%	31.1%
Maximum Green (s)	45.0		5.0	56.0	22.0	22.0
Yellow Time (s)	45.0		4.0	4.0	3.5	3.5
	2.0		2.0	2.0	2.5	2.5
All-Red Time (s)						
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead			

Lanes, Volumes, Timings 6: Western Access & Second Ave

	-	\rightarrow	•	•	4	~	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0	
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0	
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0	
Recall Mode	Min		None	Min	None	None	
v/c Ratio	0.63		0.18	0.21	0.68	0.21	
Control Delay	14.2		42.3	6.8	37.8	8.2	
Queue Delay	0.0		0.0	0.0	0.0	0.0	
Total Delay	14.2		42.3	6.8	37.8	8.2	
Queue Length 50th (ft)	153		9	41	111	0	
Queue Length 95th (ft)	353		35	75	216	36	
Internal Link Dist (ft)	593			897	112		
Turn Bay Length (ft)			230				
Base Capacity (vph)	2220		119	2640	564	536	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.56		0.18	0.17	0.48	0.16	
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 74	.2						
Natural Cycle: 60							
Control Type: Actuated-Un	ncoordinated						
0.17		0.0					
Splits and Phases: 6: W	estern Acces	s & Seco	na Ave				
√ø1 →ø2							
11 s 51 s							
4 — Ø6							
co -							

				•			٠,	'	- /	•	•	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ⊅		ሻ	∱ }			र्स	7	7	र्स	7
Traffic Volume (veh/h)	162	286	2	118	682	610	2	20	22	464	69	170
Future Volume (veh/h)	162	286	2	118	682	610	2	20	22	464	69	170
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.96	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1904	1769	1769	1864	1879	1879	1781	1781	1932	1934	1919	2042
Adj Flow Rate, veh/h	167	295	2	122	703	629	2	21	23	529	0	175
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	5	14	14	5	4	4	21	21	11	3	4	1
Cap, veh/h	197	1649	11	151	824	722	7	77	213	635	0	482
Arrive On Green	0.11	0.48	0.48	0.08	0.46	0.46	0.05	0.05	0.05	0.17	0.00	0.17
Sat Flow, veh/h	1813	3421	23	1776	1799	1576	154	1619	1566	3683	0	1704
Grp Volume(v), veh/h	167	145	152	122	698	634	23	0	23	529	0	175
	1813	1680	1764	1776	1785	1590	1774	0	1566	1842	0	1704
Q Serve(g_s), s	10.2	5.5	5.5	7.6	39.1	40.5	1.4	0.0	1.5	15.6	0.0	9.3
Cycle Q Clear(g_c), s	10.2	5.5	5.5	7.6	39.1	40.5	1.4	0.0	1.5	15.6	0.0	9.3
Prop In Lane	1.00		0.01	1.00		0.99	0.09		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	197	810	850	151	818	728	84	0	213	635	0	482
V/C Ratio(X)	0.85	0.18	0.18	0.81	0.85	0.87	0.27	0.00	0.11	0.83	0.00	0.36
Avail Cap(c_a), veh/h	242	810	850	268	824	734	110	0	236	720	0	521
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	49.3	16.5	16.5	50.6	27.1	27.5	51.8	0.0	43.0	45.0	0.0	32.4
Incr Delay (d2), s/veh	20.2	0.4	0.4	9.8	10.3	12.9	1.7	0.0	0.2	7.5	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.7	2.2	2.3	3.8	18.2	17.2	0.7	0.0	0.6	7.8	0.0	3.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	69.4	16.9	16.9	60.4	37.4	40.4	53.5	0.0	43.2	52.5	0.0	32.9
LnGrp LOS	Е	В	В	Е	D	D	D	Α	D	D	Α	С
Approach Vol, veh/h		464			1454			46			704	
Approach Delay, s/veh		35.8			40.6			48.4			47.6	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.2	57.6		11.3	15.6	60.3		25.4				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	15.0	52.0		7.0	17.0	50.0		22.0				
Max Q Clear Time (g_c+l1), s	12.2	42.5		3.5	9.6	7.5		17.6				
Green Ext Time (p_c), s	0.1	9.1		0.0	0.2	7.8		1.4				
Intersection Summary												
HCM 6th Ctrl Delay			41.8									
HCM 6th LOS			41.0 D									
Notes												

	-	•	•	←	•	-
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†		7	^	¥	TIDIT
Traffic Volume (veh/h)	441	61	79	785	4	7
Future Volume (veh/h)	441	61	79	785	4	7
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00	•	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1731	1731	1744	1909	2018	2018
Adj Flow Rate, veh/h	455	63	81	809	4	7
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	11	11	13	2	0.57	0.57
Cap, veh/h	1206	166	127	2380	9	16
Arrive On Green	0.42	0.42	0.08	0.66	0.02	0.02
		400		3723		1048
Sat Flow, veh/h	2990		1661		599	
Grp Volume(v), veh/h	257	261	81	809	12	0
Grp Sat Flow(s),veh/h/ln	1645	1659	1661	1814	1797	0
Q Serve(g_s), s	4.0	4.0	1.7	3.6	0.2	0.0
Cycle Q Clear(g_c), s	4.0	4.0	1.7	3.6	0.2	0.0
Prop In Lane		0.24	1.00		0.33	0.58
Lane Grp Cap(c), veh/h	683	689	127	2380	28	0
V/C Ratio(X)	0.38	0.38	0.64	0.34	0.43	0.00
Avail Cap(c_a), veh/h	1799	1815	1000	6748	491	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	7.4	7.4	16.4	2.8	17.8	0.0
Incr Delay (d2), s/veh	0.3	0.3	5.2	0.1	9.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.9	0.9	0.7	0.2	0.2	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	7.7	7.8	21.5	2.9	27.7	0.0
LnGrp LOS	Α	A	C	A	С	A
Approach Vol, veh/h	518			890	12	
Approach Delay, s/veh	7.8			4.6	27.7	
• • • • • • • • • • • • • • • • • • • •	7.0 A			4.0 A	21.1 C	
Approach LOS	А			A	U	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	8.8	21.2		6.6		30.0
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	22.0	40.0		10.0		68.0
Max Q Clear Time (g_c+l1), s	3.7	6.0		2.2		5.6
Green Ext Time (p_c), s	0.2	8.3		0.0		18.4
u = /·						
Intersection Summary						
HCM 6th Ctrl Delay			5.9			
HCM 6th LOS			Α			
Notes						
INUIGO		0 1			(

	→	*	•	←	•	<i>></i>	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑ ↑		ሻ	^	ሻ	7	
Traffic Volume (veh/h)	492	160	51	737	18	3	
Future Volume (veh/h)	492	160	51	737	18	3	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1716	1716	1939	1879	2018	2018	
Adj Flow Rate, veh/h	523	170	54	784	19	3	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	12	12	0	4	0	0	
Cap, veh/h	1186	384	103	2456	52	46	
Arrive On Green	0.49	0.49	0.06	0.69	0.03	0.03	
Sat Flow, veh/h	2508	784	1847	3665	1922	1710	
Grp Volume(v), veh/h	351	342	54	784	19	3	
Grp Sat Flow(s),veh/h/ln	1630	1575	1847	1785	1922	1710	
Q Serve(g_s), s	5.9	5.9	1.2	3.7	0.4	0.1	
Cycle Q Clear(g_c), s	5.9	5.9	1.2	3.7	0.4	0.1	
Prop In Lane		0.50	1.00		1.00	1.00	
_ane Grp Cap(c), veh/h	798	771	103	2456	52	46	
//C Ratio(X)	0.44	0.44	0.53	0.32	0.37	0.07	
Avail Cap(c_a), veh/h	1860	1797	658	5854	411	366	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	7.0	7.0	19.3	2.6	20.1	20.0	
ncr Delay (d2), s/veh	0.4	0.4	4.1	0.1	4.3	0.6	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.4	1.3	0.6	0.3	0.2	0.0	
Jnsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	7.4	7.4	23.4	2.7	24.4	20.5	
_nGrp LOS	Α	Α	С	Α	С	С	
Approach Vol, veh/h	693			838	22		
Approach Delay, s/veh	7.4			4.0	23.9		
Approach LOS	А			Α	С		
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	8.3	26.6				34.9	7.1
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	15.0	48.0				69.0	9.0
Max Q Clear Time (g_c+l1), s	3.2	7.9				5.7	2.4
Green Ext Time (p_c), s	0.1	12.7				17.7	0.0
Intersection Summary							
HCM 6th Ctrl Delay			5.8				
HCM 6th LOS			3.0 A				
TOW OUT LOO			$\overline{\Lambda}$				

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

	۶	→	•	•	←	•	•	†	<i>></i>	/	↓	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተ ኈ		ች	↑ ↑			4	7	ሻ	र्स	7
Traffic Volume (vph)	162	286	2	118	682	610	2	20	22	464	69	170
Future Volume (vph)	162	286	2	118	682	610	2	20	22	464	69	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	12	12	10	12	12	12	12	12	11	11	13
Grade (%)		-2%			-1%			-5%			-2%	
Storage Length (ft)	580		0	100		0	0		0	0		85
Storage Lanes	1		0	1		0	0		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			No			No			No			No
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		1023			612			255			258	
Travel Time (s)		19.9			11.9			7.0			7.0	
Confl. Peds. (#/hr)	3		3	3		3	9		1	1		9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	5%	14%	0%	5%	4%	7%	0%	21%	11%	3%	4%	1%
Shared Lane Traffic (%)										43%		
Lane Group Flow (vph)	167	297	0	122	1332	0	0	23	23	272	277	175
Number of Detectors	1	1		1	1		1	1	1	1	1	1
Detector Template	Left						Left					
Leading Detector (ft)	40	231		40	231		20	40	40	40	40	40
Trailing Detector (ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Position(ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Size(ft)	40	6		40	6		20	40	40	40	40	40
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	5	8	8	1
Permitted Phases									4			8
Detector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase												
Minimum Initial (s)	7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	37.0		13.0	37.0		13.0	13.0	13.0	28.0	28.0	13.0
Total Split (s)	21.0	56.0		23.0	58.0		13.0	13.0	23.0	28.0	28.0	21.0
Total Split (%)	17.5%	46.7%		19.2%	48.3%		10.8%	10.8%	19.2%	23.3%	23.3%	17.5%
Maximum Green (s)	15.0	50.0		17.0	52.0		7.0	7.0	17.0	22.0	22.0	15.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min		None	Min		None	None	None	None	None	None
Walk Time (s)		11.0			11.0					4.0	4.0	
Flash Dont Walk (s)		20.0			20.0					18.0	18.0	

1: Technology Dr/Bates St & Second Ave

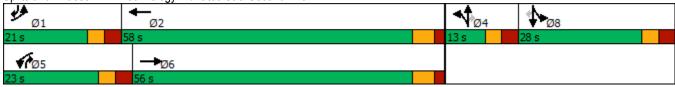
	•	→	•	•	←	•	4	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.81	0.20		0.64	0.93			0.23	0.10	0.88	0.89	0.34
Control Delay	78.2	20.0		64.3	42.0			59.3	24.0	75.1	75.6	28.6
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	78.2	20.0		64.3	42.0			59.3	24.0	75.1	75.6	28.6
Queue Length 50th (ft)	128	73		91	522			17	10	220	224	96
Queue Length 95th (ft)	#248	108		154	#687			46	24	#390	#395	155
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	218	1488		246	1475			102	279	321	325	533
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.77	0.20		0.50	0.90			0.23	0.08	0.85	0.85	0.33

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 112.3


Natural Cycle: 105

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2031 Base Lanes, Volumes, Timings

	-	*	•	←	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑	LDIX	YVDL	↑ ↑	NDL NDL	HUIN
Traffic Volume (vph)	441	61	79	785	4	7
Future Volume (vph)	441	61	79	785	4	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	1900	1300	1300	1300
Grade (%)	1%	12	10	-1%	-3%	12
Storage Length (ft)	1 /0	0	200	- 1 /U	-5 /8	0
Storage Lanes		0	1		1	0
Taper Length (ft)		- 0	25		25	U
Right Turn on Red		Yes	20		20	No
Link Speed (mph)	35	163		35	25	INU
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)	13.0			13.3	0.7	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
	11%	4%	13%	2%	0.97	0.97
Heavy Vehicles (%)	11%	4%	13%	2%	U%	U%
Shared Lane Traffic (%)	E10	0	01	900	11	0
Lane Group Flow (vph)	518	0	81 1	809 2	11 1	0
Number of Detectors	2		Left	2	Left	
Detector Template	261		Leπ 40	261	Leπ 40	
Leading Detector (ft)						
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)			0	0		
Detector 1 Size(ft)	6		40 CL Ev	6 CL Ev	40 CL Ev	
Detector 1 Type	CI+Ex		Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel	0.0		0.0	0.0	0.0	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6 CL Ev		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	0.0			0.0		
Detector 2 Extend (s)	0.0		D4	0.0	D4	
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases	•		4	•		
Detector Phase	2		1	6	4	
Switch Phase	4- 0					
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	46.0		28.0	74.0	16.0	
Total Split (%)	51.1%		31.1%	82.2%	17.8%	
Maximum Green (s)	40.0		22.0	68.0	10.0	
Yellow Time (s)	4.0		3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

	→	\searrow	•	←	1	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Minimum Gap (s)	6.0		3.0	6.0	3.0		
Time Before Reduce (s)	15.0		5.0	15.0	5.0		
Time To Reduce (s)	15.0		5.0	15.0	5.0		
Recall Mode	Min		None	Min	None		
v/c Ratio	0.24		0.27	0.24	0.04		
Control Delay	7.4		18.2	1.4	19.1		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	7.4		18.2	1.4	19.1		
Queue Length 50th (ft)	28		15	0	2		
Queue Length 95th (ft)	104		58	71	16		
Internal Link Dist (ft)	897			943	166		
Turn Bay Length (ft)			200				
Base Capacity (vph)	2989		832	3557	433		
Starvation Cap Reductn	0		0	0	0		
Spillback Cap Reductn	0		0	0	0		
Storage Cap Reductn	0		0	0	0		
Reduced v/c Ratio	0.17		0.10	0.23	0.03		
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 41	1.2						
Natural Cycle: 45							
Control Type: Actuated-Ur	ncoordinated						
Splits and Phases: 2: M	liddle Access	& Secon	d Ave				
√ Ø1			Ø2				
28 s		46 s	-				
4							

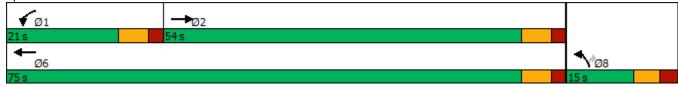
Lane Group		→	•	•	←	4	~
Lane Configurations	Lane Group	FRT	FRR	WRI	WRT	NRI	NBR
Traffic Volume (vph)			LDIN				
Future Volume (vph)			160				
Ideal Flow (vphph)	、 . ,						
Lane Width (ft)	· · · ·						
Grade (%) 1% -1% -3% Storage Length (ft) 0 230 0 0 Storage Lanes 0 1 1 1 Taper Length (ft) 25 25	(1 , 7						
Storage Length (ft)			12	10			14
Storage Lanes		1 /0	Ο	230	- 1 /0		Λ
Taper Length (ft) 25 25 Right Turn on Red Yes Yes Link Speed (mph) 35 35 25 Link Distance (ft) 673 977 192 Travel Time (s) 13.1 19.0 5.2 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 Heavy Vehicles (%) 12% 2% 0% 4% 0.94 0.94 Heavy Vehicles (%) 12% 2% 0% 4% 0.94 0.94 Heavy Vehicles (%) 12% 2% 0% 4% 0.94 0.94 Heavy Vehicles (%) 12% 2% 0% 4% 0.94 0.94 Heavy Vehicles (%) 12% 2% 0% 4% 0.94 0	3 3 1 7						
Right Turn on Red			U	•			
Link Speed (mph) 35 35 25 Link Distance (ft) 673 977 192 Travel Time (s) 13.1 19.0 5.2 Peak Hour Factor 0.94			Yas	2.0		2.5	VΔe
Link Distance (ft) 673 977 192 Travel Time (s) 13.1 19.0 5.2 Peak Hour Factor 0.94	•	35	163		35	25	163
Travel Time (s) 13.1 19.0 5.2 Peak Hour Factor 0.94 0							
Peak Hour Factor 0.94 0.90 0							
Heavy Vehicles (%)			0.04	0.04			0.04
Shared Lane Traffic (%) Lane Group Flow (vph) 693 0 54 784 19 3 Number of Detectors 2 1 2 1 1 1 Detector Template Leading Detector (ft) 261 40 261 40 40 40 Trailing Detector (ft) 0 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 0 Detector 1 Size(ft) 6 40 6 40 40 40 Detector 1 Size(ft) 6 40 6 40 40 40 Detector 1 Type Cl+Ex C							
Lane Group Flow (vph) 693 0 54 784 19 3 Number of Detectors 2 1 2 1 1 Detector Template 261 40 261 40 40 Leading Detector (ft) 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 0		12%	۷%	U%	4%	U%	U%
Number of Detectors 2	` ,	602	0	E A	704	40	2
Detector Template Leading Detector (ft) 261			U				
Leading Detector (ft) 261 40 261 40 40 Trailing Detector (ft) 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 Detector 1 Size(ft) 6 40 6 40 40 Detector 1 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 1 Channel Detector 1 Extend (s) 0.0 <td></td> <td>2</td> <td></td> <td>1</td> <td>2</td> <td>1</td> <td>1</td>		2		1	2	1	1
Trailing Detector (ft) 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 Detector 1 Size(ft) 6 40 6 40 40 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Queue (s) 0.0	•	004		40	004	40	40
Detector 1 Position(ft) 0 0 0 0 0 Detector 1 Size(ft) 6 40 6 40 40 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(ft) 255 255 255 255 255 Detector 2 Size(ft) 6 6 6 6 6 6 10.0 0.0							
Detector 1 Size(ft) 6 40 6 40 40 Detector 1 Type CI+Ex Detector 1 Delay (s) 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Detector 1 Type	` /						
Detector 1 Channel Detector 1 Extend (s) 0.0	. ,						
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(ft) 255 255 255 255 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0		CI+EX		CI+EX	CI+EX	CI+EX	CI+EX
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(ft) 255 255 255 Detector 2 Size(ft) 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Turn Type NA Prot NA Prot Permitted Phases 2 1 6 8 Permitted Phases 2 1 6 8 8 Switch Phase 2 1 6 8 8 Switch Phase 2 1 6 8 8 Switch Phase 3 15.0 5.0 15.0 5.0 5.0 Minimum Initial (s) 15.0 5.0 15.0 15.0 15.0 Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%)		2.2		2.2	0.0	2.2	0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(ft) 255 255 Detector 2 Size(ft) 6 6 Detector 2 Type Cl+Ex Cl+Ex Detector 2 Channel Cl+Ex Cl+Ex Detector 2 Extend (s) 0.0 0.0 Turn Type NA Prot NA Prot Permitted Phases 2 1 6 8 Permitted Phases 2 1 6 8 8 Switch Phase 2 1 6 8 8 Switch Phase 2 15.0 5.0 5.0 5.0 Minimum Initial (s) 15.0 5.0 15.0 5.0 5.0 Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 11.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yello	()						
Detector 2 Position(ft) 255 255 Detector 2 Size(ft) 6 6 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Turn Type NA Prot NA Prot Permitted Phases 2 1 6 8 Permitted Phases 2 1 6 8 8 Switch Phase 2 1 6 8 8 Switch Phase 3 15.0 5.0 15.0 5.0 5.0 Minimum Initial (s) 15.0 5.0 15.0 5.0 5.0 Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 11.0 Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0	. ,						
Detector 2 Size(ft) 6 6 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Prot NA Prot Permitted Phases 2 1 6 8 Permitted Phases 2 1 6 8 8 Detector Phase 2 1 6 8 8 Switch Phase 8 8 8 8 Minimum Initial (s) 15.0 5.0 15.0 5.0 5.0 Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 11.0 11.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7% 16.7%	• ()			0.0		0.0	0.0
Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Turn Type NA Prot NA Prot Protected Phases 2 1 6 8 Permitted Phases 8 8 Detector Phase 2 1 6 8 8 Switch Phase 8 8 8 8 8 8 8 8 9	. ,						
Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 Turn Type NA Prot NA Prot Permitted Phases 2 1 6 8 Permitted Phases 8 8 8 Detector Phase 2 1 6 8 8 Switch Phase 8 9 9 9 9 9 9 9 9 9 9 9	` ,						
Detector 2 Extend (s) 0.0 0.0 Turn Type NA Prot NA Prot Perm Protected Phases 2 1 6 8 Permitted Phases 8 8 8 Detector Phase 2 1 6 8 8 Switch Phase 8 9 8 3 9 10 10 10 10 10 10 10 10 <td< td=""><td></td><td>CI+Ex</td><td></td><td></td><td>CI+Ex</td><td></td><td></td></td<>		CI+Ex			CI+Ex		
Turn Type NA Prot NA Prot Perm Protected Phases 2 1 6 8 Permitted Phases 2 1 6 8 8 Detector Phase 2 1 6 8 8 Switch Phase 8 3 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 15.0 15.0 15.0 15.0 15.0 15.0 16.7% 16.7% <							
Protected Phases 2 1 6 8 Permitted Phases 8 8 Detector Phase 2 1 6 8 8 Switch Phase 8 9 9 0 10 10 10 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 <td< td=""><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	. ,						
Permitted Phases 8 Detector Phase 2 1 6 8 8 Switch Phase Minimum Initial (s) 15.0 5.0 15.0 5.0 5.0 Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0							Perm
Detector Phase 2 1 6 8 8 Switch Phase Minimum Initial (s) 15.0 5.0 15.0 5.0 5.0 Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0		2		1	6	8	
Switch Phase Minimum Initial (s) 15.0 5.0 15.0 5.0 5.0 5.0 Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 11.0 Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0							
Minimum Initial (s) 15.0 5.0 15.0 5.0 Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0		2		1	6	8	8
Minimum Split (s) 21.0 11.0 21.0 11.0 11.0 Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0							
Total Split (s) 54.0 21.0 75.0 15.0 15.0 Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0							
Total Split (%) 60.0% 23.3% 83.3% 16.7% 16.7% Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0							
Maximum Green (s) 48.0 15.0 69.0 9.0 9.0 Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0							
Yellow Time (s) 4.0 4.0 4.0 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0							
All-Red Time (s) 2.0 2.0 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0	· ,						
Lost Time Adjust (s) 0.0 0.0 0.0 0.0	Yellow Time (s)			4.0	4.0	3.5	
	All-Red Time (s)			2.0	2.0	2.5	2.5
		0.0		0.0	0.0	0.0	0.0
	Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag Lag Lead							
Lead-Lag Optimize?							

6: Western Access & Second Ave

	-	•	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0
Recall Mode	Min		None	Min	None	None
v/c Ratio	0.27		0.20	0.25	0.08	0.01
Control Delay	5.9		25.9	2.1	27.7	21.7
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	5.9		25.9	2.1	27.7	21.7
Queue Length 50th (ft)	0		9	0	3	0
Queue Length 95th (ft)	123		60	69	29	8
Internal Link Dist (ft)	593			897	112	
Turn Bay Length (ft)			230			
Base Capacity (vph)	2806		570	3372	370	333
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.25		0.09	0.23	0.05	0.01

Intersection Summary

Area Type: Other


Cycle Length: 90

Actuated Cycle Length: 49.7

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: Western Access & Second Ave

2031 Base Lanes, Volumes, Timings

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		ሻ	∱ ∱			र्स	7	ሻ	र्स	7
Traffic Volume (veh/h)	308	921	1	24	305	373	4	163	133	431	18	76
Future Volume (veh/h)	308	921	1	24	305	373	4	163	133	431	18	76
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.96	1.00		0.90	1.00		0.94
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1964	1949	1949	1939	1819	1819	2067	2067	2067	1934	1979	1995
Adj Flow Rate, veh/h	331	990	1	26	328	401	4	175	143	477	0	82
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	2	2	0	8	8	2	2	2	3	0	4
Cap, veh/h	369	1750	2	65	517	443	5	217	230	646	0	611
Arrive On Green	0.20	0.46	0.46	0.04	0.30	0.30	0.11	0.11	0.11	0.18	0.00	0.18
Sat Flow, veh/h	1870	3795	4	1847	1728	1480	46	2018	1571	3683	0	1584
Grp Volume(v), veh/h	331	483	508	26	328	401	179	0	143	477	0	82
Grp Sat Flow(s),veh/h/ln	1870	1851	1948	1847	1728	1480	2064	0	1571	1842	0	1584
Q Serve(g_s), s	18.8	20.7	20.7	1.5	17.8	28.3	9.2	0.0	9.3	13.3	0.0	3.7
Cycle Q Clear(g_c), s	18.8	20.7	20.7	1.5	17.8	28.3	9.2	0.0	9.3	13.3	0.0	3.7
Prop In Lane	1.00		0.00	1.00		1.00	0.02	0.0	1.00	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	369	854	898	65	517	443	222	0	230	646	0	611
V/C Ratio(X)	0.90	0.57	0.57	0.40	0.63	0.91	0.81	0.00	0.62	0.74	0.00	0.13
Avail Cap(c_a), veh/h	465	854	898	170	525	449	266	0	264	746	0	654
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	42.6	21.3	21.3	51.3	32.9	36.6	47.4	0.0	43.9	42.4	0.0	22.6
Incr Delay (d2), s/veh	17.2	2.2	2.1	4.0	4.9	23.9	14.2	0.0	3.5	3.3	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	10.3	9.1	9.6	0.8	8.0	12.9	5.6	0.0	3.9	6.4	0.0	1.4
Unsig. Movement Delay, s/veh	10.0	0.1	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.1	0.0	
LnGrp Delay(d),s/veh	59.8	23.6	23.4	55.3	37.9	60.5	61.5	0.0	47.5	45.7	0.0	22.7
LnGrp LOS	E	C	C	E	D	E	E	Α	T7 .0	D	Α	C
Approach Vol, veh/h		1322			755			322			559	
Approach Delay, s/veh		32.6			50.5			55.3			42.4	
Approach LOS		32.0 C			50.5 D			55.5 E			42.4 D	
Approach 203					D						U	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	27.4	38.5		17.7	9.8	56.1		25.1				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	27.0	33.0		14.0	10.0	50.0		22.0				
Max Q Clear Time (g_c+I1), s	20.8	30.3		11.3	3.5	22.7		15.3				
Green Ext Time (p_c), s	0.6	2.2		0.4	0.0	21.0		1.5				
Intersection Summary												
HCM 6th Ctrl Delay			41.5									
HCM 6th LOS			D									
Notes												

	→	•	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1>		*	^	W	
Traffic Volume (veh/h)	1183	17	18	383	43	57
Future Volume (veh/h)	1183	17	18	383	43	57
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	•	1.00	1.00	•	1.00	0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1864	1864	1504	1849	2018	2018
Adj Flow Rate, veh/h	1220	18	19	395	44	59
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
	0.97		29	0.97		
Percent Heavy Veh, %		2			0	70
Cap, veh/h	2183	32	32	2564	58	78
Arrive On Green	0.61	0.61	0.02	0.73	0.08	0.08
Sat Flow, veh/h	3667	53	1432	3606	748	1003
Grp Volume(v), veh/h	605	633	19	395	104	0
Grp Sat Flow(s),veh/h/ln	1771	1855	1432	1757	1768	0
Q Serve(g_s), s	12.6	12.6	8.0	2.1	3.6	0.0
Cycle Q Clear(g_c), s	12.6	12.6	0.8	2.1	3.6	0.0
Prop In Lane		0.03	1.00		0.42	0.57
Lane Grp Cap(c), veh/h	1082	1133	32	2564	137	0
V/C Ratio(X)	0.56	0.56	0.59	0.15	0.76	0.00
Avail Cap(c_a), veh/h	1422	1489	161	3553	426	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	7.2	7.2	30.2	2.6	28.2	0.00
Incr Delay (d2), s/veh	0.5	0.4	16.0	0.0	8.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	3.6	0.4	0.4	1.8	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	7.6	7.6	46.1	2.6	36.4	0.0
LnGrp LOS	Α	Α	D	Α	D	Α
Approach Vol, veh/h	1238			414	104	
Approach Delay, s/veh	7.6			4.6	36.4	
Approach LOS	Α			Α	D	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	7.4	44.1		10.8		51.5
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	7.0	50.0		15.0		63.0
Max Q Clear Time (g_c+l1), s	2.8	14.6		5.6		4.1
Green Ext Time (p_c), s	0.0	23.5		0.2		7.3
· · ·	3.0					
Intersection Summary			0.0			
HCM 6th Ctrl Delay			8.6			
HCM 6th LOS			Α			
Notes						

	→	•	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	† }		ሻ	^	¥#	7	
Traffic Volume (veh/h)	1184	61	2	409	182	32	
Future Volume (veh/h)	1184	61	2	409	182	32	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	•	1.00	1.00	-	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1864	1864	1939	1864	2003	2018	
Adj Flow Rate, veh/h	1221	63	2	422	188	33	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	0	5	1	0	
Cap, veh/h	2032	105	5	2432	251	225	
Arrive On Green	0.59	0.59	0.00	0.69	0.13	0.13	
Sat Flow, veh/h	3520	177	1847	3635	1908	1710	
Grp Volume(v), veh/h	630	654	2	422	188	33	
Grp Sat Flow(s), veh/h/ln	1771	1833	1847	1771	1908	1710	
) Serve(g_s), s	14.8	14.9	0.1	2.8	6.3	1.1	
Cycle Q Clear(g_c), s	14.8	14.9	0.1	2.8	6.3	1.1	
Prop In Lane	1 1.0	0.10	1.00	2.0	1.00	1.00	
ane Grp Cap(c), veh/h	1050	1087	5	2432	251	225	
//C Ratio(X)	0.60	0.60	0.40	0.17	0.75	0.15	
Avail Cap(c_a), veh/h	1289	1334	140	3168	549	493	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	8.5	8.5	32.8	3.7	27.6	25.4	
ncr Delay (d2), s/veh	0.6	0.5	43.8	0.0	4.5	0.3	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.4	4.6	0.1	0.6	3.1	0.5	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	9.0	9.0	76.6	3.7	32.1	25.7	
nGrp LOS	Α	Α	E	Α	С	С	
pproach Vol, veh/h	1284			424	221		
pproach Delay, s/veh	9.0			4.1	31.1		
Approach LOS	A			Α	С		
						_	_
Fimer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	6.2	45.1				51.3	14.7
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	5.0	48.0				59.0	19.0
Max Q Clear Time (g_c+I1), s	2.1	16.9				4.8	8.3
reen Ext Time (p_c), s	0.0	22.2				7.8	0.6
tersection Summary							
CM 6th Ctrl Delay			10.5				
ICM 6th LOS			В				
Notes							

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

Lane Group		۶	→	*	€	+	•	•	†	/	/	↓	-√
Traffic Volume (vph) 308 921 1 24 305 373 4 163 133 431 18 76 76 76 76 70 70 70 70	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 308 921 1 24 305 373 4 163 133 431 18 76	Lane Configurations	¥	↑ 1₃		Ť	♦ %			ની	7	7	ની	7
Fulture Volume (vph) 308 921 1 24 305 373 4 163 133 431 18 76 66 66 Flow (vphpl) 1900		308		1	24		373	4		133	431		
Ideal Flow (yphpi)		308	921	1	24	305	373	4	163	133	431	18	76
Lane Width (ft)	` ' '	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		10	12	12	10	12	12	12	12	12	11	11	
Storage Langes			-2%										
Storage Lanes		580		0	100		0	0		0	0		85
Taper Length (ft)	3 3 1 7	1		0	1		0	0		1	1		
Right Turn on Red 35		25			25						25		
Link Speed (mph)				No			No			No			No
Link Distance (ft)			35			35			25			25	
Travel Time (s)													
Confi. Peds. (#hr)													
Peak Hour Factor 0.93 0.	\ /	11		24	24		11	3		37	37		3
Heavy Vehicles (%)	, ,		0.93			0.93			0.93			0.93	
Shared Lane Traffic (%) Sand Port Sa													
Lane Group Flow (vph) 331 991 0 26 729 0 0 179 143 241 241 82 Number of Detectors													
Number of Detectors		331	991	0	26	729	0	0	179	143		241	82
Detector Template				•			-						
Leading Detector (ft)													
Trailing Detector (ft) 0 225 0 225 0<	•		231		40	231			40	40	40	40	40
Detector 1 Position(ft)													
Detector 1 Size(ft)													
Detector 1 Type	. ,				40							40	40
Detector 1 Channel													
Detector 1 Extend (s) 0.0													
Detector 1 Queue (s) 0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s) 0.0	()												
Turn Type Prot NA Prot NA Split NA pm+ov Split NA pm+ov Protected Phases 1 6 5 2 4 4 5 8 8 1 Permitted Phases 1 6 5 2 4 4 5 8 8 1 Switch Phase Minimum Initial (s) 7.0 15.0 7.0 15.0 7.0 <													
Protected Phases 1 6 5 2 4 4 5 8 8 1													pm+ov
Permitted Phases								•		•			1
Detector Phase 1 6 5 2 4 4 5 8 8 1													8
Minimum Initial (s) 7.0 15.0 7.0 15.0 7.0	Detector Phase	1	6		5	2		4	4	5	8	8	
Minimum Initial (s) 7.0 15.0 7.0 15.0 7.0	Switch Phase												
Minimum Split (s) 13.0 37.0 13.0 37.0 13.0 13.0 13.0 28.0 28.0 28.0 28.0 33.0 Total Split (s) 33.0 56.0 16.0 39.0 20.0 20.0 16.0 28.0 28.0 33.0 Total Split (%) 27.5% 46.7% 13.3% 32.5% 16.7% 16.7% 13.3% 23.3% 23.3% 27.5% Maximum Green (s) 27.0 50.0 10.0 33.0 14.0 14.0 10.0 22.0 27.0 Yellow Time (s) 3.0 4.0 3.0 4.0 3.0 4.0 </td <td></td> <td>7.0</td> <td>15.0</td> <td></td> <td>7.0</td> <td>15.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td>7.0</td> <td>7.0</td> <td>7.0</td> <td>7.0</td>		7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Total Split (s) 33.0 56.0 16.0 39.0 20.0 20.0 16.0 28.0 28.0 33.0 Total Split (%) 27.5% 46.7% 13.3% 32.5% 16.7% 16.7% 13.3% 23.3% 27.5% Maximum Green (s) 27.0 50.0 10.0 33.0 14.0 14.0 10.0 22.0 22.0 27.0 Yellow Time (s) 3.0 4.0 3.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0													
Total Split (%) 27.5% 46.7% 13.3% 32.5% 16.7% 16.7% 13.3% 23.3% 23.3% 27.5% Maximum Green (s) 27.0 50.0 10.0 33.0 14.0 14.0 10.0 22.0 22.0 27.0 Yellow Time (s) 3.0 4.0 3.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 <td></td>													
Maximum Green (s) 27.0 50.0 10.0 33.0 14.0 14.0 10.0 22.0 22.0 27.0 Yellow Time (s) 3.0 4.0 3.0 4.0 3.0													
Yellow Time (s) 3.0 4.0 3.0 4.0 3.0													
All-Red Time (s) 3.0 2.0 3.0 2.0 3.0 0.0 <td></td>													
Lost Time Adjust (s) 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lead L													
Total Lost Time (s) 6.0 Lead 3.0<													
Lead/Lag Lead Lag Lead Lead Lead-Lag Optimize? Vehicle Extension (s) 3.0 6.0 3.0	2 ()												
Lead-Lag Optimize? Vehicle Extension (s) 3.0 6.0 3.0 <td></td>													
Vehicle Extension (s) 3.0 6.0 3.0			· J			- 3							
Recall Mode None Min None Min None None None None None None None Non		3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Walk Time (s) 11.0 11.0 4.0 4.0	` ,												
Fiash Dont Walk (s) 20.0 20.0 18.0 18.0	Flash Dont Walk (s)		20.0			20.0					18.0	18.0	

1: Technology Dr/Bates St & Second Ave

	•	→	•	•	←	•	4	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.89	0.67		0.20	0.99dr			0.80	0.47	0.84	0.83	0.13
Control Delay	69.3	29.8		55.5	54.6			75.4	28.4	71.7	70.6	19.3
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	69.3	29.8		55.5	54.6			75.4	28.4	71.7	70.6	19.3
Queue Length 50th (ft)	249	314		19	283			137	62	190	190	35
Queue Length 95th (ft)	#413	395		49	#385			#256	102	#329	#327	67
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	409	1616		152	906			240	325	320	324	674
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.81	0.61		0.17	0.80			0.75	0.44	0.75	0.74	0.12

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 112.8

Natural Cycle: 105

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

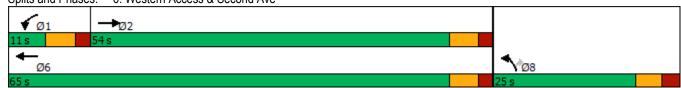
Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2031 Base Lanes, Volumes, Timings

	→	*	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LUIX	YVDL	↑ ↑	₩.	HUIT
Traffic Volume (vph)	T № 1183	17	18	TT 383	43	57
			18	383	43	57 57
Future Volume (vph)	1183	17				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	12	12	12
Grade (%)	1%	•	000	-1%	-3%	
Storage Length (ft)		0	200		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Right Turn on Red		Yes				No
Link Speed (mph)	35			35	25	
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)					1	7
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	10%	29%	6%	0%	0%
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1238	0	19	395	103	0
Number of Detectors	2		1	2	1	
Detector Template			Left		Left	
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	CI+Ex		Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel	0.0		0.0	0.0	0.0	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases			-	-		
Detector Phase	2		1	6	4	
Switch Phase			•		•	
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	56.0		13.0	69.0	21.0	
Total Split (%)	62.2%		14.4%	76.7%	23.3%	
	50.0		7.0	63.0		
Maximum Green (s)					15.0	
Yellow Time (s)	4.0		3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

	→	•	•	←	1	~	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Minimum Gap (s)	6.0		3.0	6.0	3.0		
Time Before Reduce (s)	15.0		5.0	15.0	5.0		
Time To Reduce (s)	15.0		5.0	15.0	5.0		
Recall Mode	Min		None	Min	None		
v/c Ratio	0.50		0.16	0.15	0.42		
Control Delay	9.4		39.9	3.8	37.7		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	9.4		39.9	3.8	37.7		
Queue Length 50th (ft)	108		8	25	43		
Queue Length 95th (ft)	302		32	48	101		
Internal Link Dist (ft)	897			943	166		
Turn Bay Length (ft)			200				
Base Capacity (vph)	2512		138	2908	388		
Starvation Cap Reductn	0		0	0	0		
Spillback Cap Reductn	0		0	0	0		
Storage Cap Reductn	0		0	0	0		
Reduced v/c Ratio	0.49		0.14	0.14	0.27		
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 71	1.5						
Natural Cycle: 60							
Control Type: Actuated-Ur	ncoordinated						
Splits and Phases: 2: M	iddle Access	& Second	d Ave				
√ø1 →	1 02						↑ Ø4
13 s 56 s	<i></i>						1s


2031 Base Timing Plan: PM Peak Lanes, Volumes, Timings

	→	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDI	ኘ	↑ ↑	W	7
Traffic Volume (vph)	1184	61	2	409	182	32
Future Volume (vph)	1184	61	2	409	182	32
` ' '	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)						
Lane Width (ft)	12	12	10	12	12	12
Grade (%)	1%			-1%	-3%	
Storage Length (ft)		0	230		0	0
Storage Lanes		0	1		1	1
Taper Length (ft)			25		25	
Right Turn on Red		Yes				Yes
Link Speed (mph)	35			35	25	
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1			19.0	5.2	
Confl. Peds. (#/hr)					3	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	0%	5%	1%	0%
Shared Lane Traffic (%)	270	170	070	0,0	170	10%
Lane Group Flow (vph)	1284	0	2	422	191	30
Number of Detectors	2	U	1	2	191	1
Detector Template			ı		I	ı
•	261		40	261	40	40
Leading Detector (ft)						
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	i Giiii
Permitted Phases	2			U	O	8
	0		4	c	0	
Detector Phase	2		1	6	8	8
Switch Phase	45.0			45.0	- 0	- 0
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	54.0		11.0	65.0	25.0	25.0
Total Split (%)	60.0%		12.2%	72.2%	27.8%	27.8%
Maximum Green (s)	48.0		5.0	59.0	19.0	19.0
Yellow Time (s)	4.0		4.0	4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead	0.0	0.0	0.0
	Lay		Leau			

2031 Base Timing Plan: PM Peak

	-	•	•	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0
Recall Mode	Min		None	Min	None	None
v/c Ratio	0.58		0.02	0.19	0.59	0.10
Control Delay	10.3		37.5	5.4	36.8	11.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	10.3		37.5	5.4	36.8	11.4
Queue Length 50th (ft)	138		1	33	80	0
Queue Length 95th (ft)	340		8	62	163	23
Internal Link Dist (ft)	593			897	112	
Turn Bay Length (ft)			230			
Base Capacity (vph)	2340		118	2825	481	428
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.55		0.02	0.15	0.40	0.07
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 73	3.2					
Natural Cycle: 60						
Control Type: Actuated-Ur	ncoordinated					

Splits and Phases: 6: Western Access & Second Ave

2031 Base Lanes, Volumes, Timings

Timing Plan: PM Peak

APPENDIX H

DESIGN YEAR 2031 BUILD (WITH PTC MASTER PLAN DEVELOPMENTS) CAPACITY CALCULATIONS

	۶	→	•	•	←	•	1	†	/	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		ሻ	ተ ኈ			र्स	7	ሻ	र्स	7
Traffic Volume (veh/h)	167	294	2	144	786	610	2	28	35	464	84	230
Future Volume (veh/h)	167	294	2	144	786	610	2	28	35	464	84	230
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.96	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1904	1769	1769	1864	1879	1879	1781	1781	1932	1934	1919	2042
Adj Flow Rate, veh/h	172	303	2	148	810	629	2	29	36	540	0	237
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	5	14	14	5	4	4	21	21	11	3	4	1
Cap, veh/h	200	1596	11	178	884	666	6	89	248	638	0	486
Arrive On Green	0.11	0.47	0.47	0.10	0.46	0.46	0.05	0.05	0.05	0.17	0.00	0.17
Sat Flow, veh/h	1813	3422	23	1776	1937	1459	115	1661	1564	3683	0	1704
Grp Volume(v), veh/h	172	149	156	148	744	695	31	0	36	540	0	237
Grp Sat Flow(s),veh/h/ln	1813	1680	1764	1776	1785	1611	1776	0	1564	1842	0	1704
Q Serve(g_s), s	10.8	6.0	6.0	9.5	45.1	47.8	2.0	0.0	2.3	16.5	0.0	13.4
Cycle Q Clear(g_c), s	10.8	6.0	6.0	9.5	45.1	47.8	2.0	0.0	2.3	16.5	0.0	13.4
Prop In Lane	1.00		0.01	1.00		0.91	0.06		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	200	784	823	178	814	735	95	0	248	638	0	486
V/C Ratio(X)	0.86	0.19	0.19	0.83	0.91	0.95	0.33	0.00	0.15	0.85	0.00	0.49
Avail Cap(c_a), veh/h	219	784	823	291	815	736	107	0	259	698	0	514
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	50.7	18.1	18.1	51.2	29.4	30.2	52.9	0.0	42.5	46.5	0.0	34.6
Incr Delay (d2), s/veh	25.7	0.4	0.4	10.1	16.0	21.8	2.0	0.0	0.3	8.9	0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.3	2.4	2.5	4.7	22.0	22.1	0.9	0.0	0.9	8.4	0.0	5.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	76.5	18.5	18.5	61.4	45.5	52.0	54.9	0.0	42.8	55.4	0.0	35.3
LnGrp LOS	Е	В	В	Е	D	D	D	Α	D	Е	Α	D
Approach Vol, veh/h		477			1587			67			777	
Approach Delay, s/veh		39.4			49.8			48.4			49.3	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.8	58.9		12.2	17.6	60.1		26.1				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	14.0	53.0		7.0	19.0	48.0		22.0				
Max Q Clear Time (g_c+l1), s	12.8	49.8		4.3	11.5	8.0		18.5				
Green Ext Time (p_c), s	0.1	3.1		0.0	0.2	7.9		1.3				
Intersection Summary												
HCM 6th Ctrl Delay			47.9									
HCM 6th LOS			D									
Notes												

	→	•	•	←	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIX	ሻ	^	¥	NDIX
Traffic Volume (veh/h)	451	100	145	883	12	10
Future Volume (veh/h)	451	100	145	883	12	10
Initial Q (Qb), veh	0	0	0	000	0	0
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1731	1731	1744	1909	2018	2018
Adj Flow Rate, veh/h	465	103	149	910	12	10
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	11	11	13	2	0	0
Cap, veh/h	1115	245	199	2471	27	22
Arrive On Green	0.42	0.42	0.12	0.68	0.03	0.03
Sat Flow, veh/h	2766	590	1661	3723	952	794
Grp Volume(v), veh/h	284	284	149	910	23	0
Grp Sat Flow(s),veh/h/ln	1645	1625	1661	1814	1825	0
Q Serve(g_s), s	5.0	5.1	3.6	4.4	0.5	0.0
Cycle Q Clear(g_c), s	5.0	5.1	3.6	4.4	0.5	0.0
Prop In Lane	0.0	0.36	1.00	1.7	0.52	0.43
Lane Grp Cap(c), veh/h	684	676	199	2471	51	0.43
V/C Ratio(X)	0.42	0.42	0.75	0.37	0.45	0.00
. ,	1394	1378	1086	5975	442	0.00
Avail Cap(c_a), veh/h						
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	8.5	8.5	17.6	2.8	19.7	0.0
Incr Delay (d2), s/veh	0.4	0.4	5.6	0.1	6.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.3	1.3	1.5	0.4	0.3	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	8.9	8.9	23.1	2.9	25.8	0.0
LnGrp LOS	Α	Α	С	Α	С	Α
Approach Vol, veh/h	568			1059	23	
Approach Delay, s/veh	8.9			5.7	25.8	
Approach LOS	Α			Α.	20.0 C	
Approach 200					U	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	10.9	23.2		7.2		34.1
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	27.0	35.0		10.0		68.0
Max Q Clear Time (g_c+l1), s	5.6	7.1		2.5		6.4
Green Ext Time (p_c), s	0.5	8.6		0.0		21.7
Green Ext Time (p_c), s	0.5	0.0		0.0		21.7
Intersection Summary						
HCM 6th Ctrl Delay			7.1			
HCM 6th LOS			Α			
			, ,			
Notes						

	→	•	•	←	•	<i>></i>	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	∱ }		ሻ	^	ሻ	7	
Traffic Volume (veh/h)	531	242	149	745	30	13	
Future Volume (veh/h)	531	242	149	745	30	13	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1716	1716	1939	1879	2018	2018	
Adj Flow Rate, veh/h	565	257	159	793	32	14	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	12	12	0	4	0	0	
Cap, veh/h	1068	485	216	2579	90	80	
Arrive On Green	0.49	0.49	0.12	0.72	0.05	0.05	
Sat Flow, veh/h	2265	989	1847	3665	1922	1710	
Grp Volume(v), veh/h	422	400	159	793	32	14	
Grp Sat Flow(s),veh/h/ln	1630	1538	1847	1785	1922	1710	
Q Serve(g_s), s	9.3	9.3	4.3	4.1	0.8	0.4	
Cycle Q Clear(g_c), s	9.3	9.3	4.3	4.1	0.8	0.4	
Prop In Lane		0.64	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	799	754	216	2579	90	80	
V/C Ratio(X)	0.53	0.53	0.74	0.31	0.36	0.18	
Avail Cap(c_a), veh/h	1349	1273	782	4879	259	230	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	9.1	9.1	22.2	2.6	24.0	23.8	
Incr Delay (d2), s/veh	0.5	0.6	4.9	0.1	2.4	1.0	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	2.5	2.4	2.0	0.5	0.4	0.2	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	9.7	9.7	27.0	2.6	26.4	24.8	
LnGrp LOS	Α	Α	С	Α	С	С	
Approach Vol, veh/h	822			952	46		
Approach Delay, s/veh	9.7			6.7	25.9		
Approach LOS	А			Α	С		
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	12.1	31.5				43.5	8.4
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	22.0	43.0				71.0	7.0
Max Q Clear Time (g_c+l1), s	6.3	11.3				6.1	2.8
Green Ext Time (p_c), s	0.4	14.2				18.1	0.0
Intersection Summary							
HCM 6th Ctrl Delay			8.5				
HCM 6th LOS			Α				
TIOW OUT LOO			\wedge				

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

Lane Configurations		•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Configurations	ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 167 294 2 144 786 610 2 28 35 464 84 Future Volume (vph) 167 294 2 144 786 610 2 28 35 464 84 Ideal Flow (vphpl) 1900		*	∳ ሴ		*	♠ ₽			4	7	ች	4	7
Future Volume (vph)				2			610	2					230
Ideal Flow (vphph)													230
Lane Width (ft)	· · · /												1900
Grade (%) -2% -1% -5% -2% Storage Length (ft) 580 0 100 0	(' ' ' '												13
Storage Length (ft) 580	` '	. •					· -			· -			
Storage Lanes		580	_,,	0	100	.,,	0	0		0	0	_,,	85
Taper Length (ft)								-					1
Right Turn on Red No	•			•	25		•			•			
Link Speed (mph) 35 35 25 25 Link Distance (ft) 1023 612 255 258 Travel Time (s) 19.9 11.9 7.0 7.0 Confl. Peds. (#/hr) 3 3 3 9 1 1 Peak Hour Factor 0.97				No			No			No			No
Link Distance (ft) 1023 612 255 258 Travel Time (s) 19.9 11.9 7.0 7.0 Confl. Peds. (#hr) 3 3 3 3 9 1 1 Peak Hour Factor 0.97<	•		35			35			25			25	
Travel Time (s) 19.9 11.9 7.0 7.0 Confl. Peds. (#/hr) 3 3 3 3 3 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1													
Confil. Peds. (#/hr) 3 3 3 3 3 9 1 1 1 Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	` '												
Peak Hour Factor 0.97		3		3	3		3	9		1	1		9
Heavy Vehicles (%) 5% 14% 0% 5% 4% 7% 0% 21% 11% 3% 4% 44% Shared Lane Traffic (%) 41% 4	, ,		0.97	-	-	0.97			0.97		0.97	0.97	0.97
Shared Lane Traffic (%) 41% Lane Group Flow (vph) 172 305 0 148 1439 0 0 31 36 282 283 Number of Detectors 1													1%
Lane Group Flow (vph) 172 305 0 148 1439 0 0 31 36 282 283 Number of Detectors 1	• • • • • • • • • • • • • • • • • • • •	0,0	, 0	• 70	0,0	.,,	. , ,	• 70	= : / •	, 0		.,,	. , ,
Number of Detectors 1	` ,	172	305	0	148	1439	0	0	31	36		283	237
Detector Template Left Leading Detector (ft) 40 231 40 231 20 40 40 40 40 40 40 40				•			•						1
Leading Detector (ft) 40 231 40 231 20 40 40 40 Trailing Detector (ft) 0 225 0 225 0			•		•					•	•	•	•
Trailing Detector (ft) 0 225 0 225 0 0 0 0 0 0 Detector 1 Position(ft) 0 225 0 225 0 0 0 0 0 0 Detector 1 Detector 1 Size(ft) 40 6 40 6 20 40			231		40	231			40	40	40	40	40
Detector 1 Position(ft) 0 225 0 225 0 0 0 0 0 Detector 1 Detector 1 Size(ft) 40 6 40 6 20 4	. ,												0
Detector 1 Size(ft) 40 6 40 6 20 40 40 40 40 Detector 1 Type CI+Ex CI+Ex <td>` ' '</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>0</td>	` ' '								-	-		-	0
Detector 1 Type CI+Ex	· ,				40						40	40	40
Detector 1 Channel Detector 1 Extend (s) 0.0	` '												CI+Ex
Detector 1 Extend (s) 0.0													
Detector 1 Queue (s) 0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s) 0.0	` '								0.0	0.0	0.0	0.0	0.0
Turn Type Prot NA Prot NA Split NA pm+ov Split NA pm Protected Phases 1 6 5 2 4 4 5 8 8 Permitted Phases 4	\					0.0					0.0		0.0
Protected Phases 1 6 5 2 4 4 5 8 8 Permitted Phases 4 <t< td=""><td>• ; ;</td><td>Prot</td><td>NA</td><td></td><td>Prot</td><td>NA</td><td></td><td>Split</td><td>NA</td><td>pm+ov</td><td>Split</td><td>NA</td><td>pm+ov</td></t<>	• ; ;	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
		1	6			2				5	•		1
	ermitted Phases									4			8
Detector Phase 1 6 5 2 4 4 5 8 8	etector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase	witch Phase												
Minimum Initial (s) 7.0 15.0 7.0 15.0 7.0 7.0 7.0 7.0 7.0		7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
		13.0			13.0			13.0	13.0	13.0			13.0
	1 \ /												20.0
					20.8%								16.7%
			48.0										14.0
Yellow Time (s) 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0	· ,												3.0
All-Red Time (s) 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0	` ,	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0		3.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0							0.0			0.0
Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0	otal Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
													Lead
Lead-Lag Optimize?	· ·												
Vehicle Extension (s) 3.0 6.0 3.0 6.0 3.0 3.0 3.0 3.0 3.0		3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
	` ,												None
Walk Time (s) 11.0 11.0 4.0 4.0													
Flash Dont Walk (s) 20.0 20.0 18.0													

2031 Build (Combined) Timing Plan: AM Peak

1: Technology Dr/Bates St & Second Ave

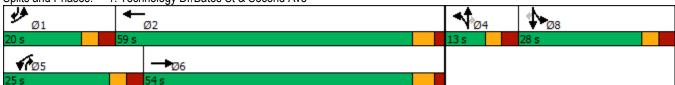
	•	→	•	•	←	•	•	†	~	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.87	0.21		0.70	0.97			0.31	0.15	0.92	0.90	0.46
Control Delay	88.9	21.1		65.5	48.8			62.4	24.3	80.9	78.6	31.8
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	88.9	21.1		65.5	48.8			62.4	24.3	80.9	78.6	31.8
Queue Length 50th (ft)	134	77		111	~624			24	15	229	229	138
Queue Length 95th (ft)	#268	115		179	#763			57	32	#409	#408	212
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	199	1456		269	1480			99	299	313	318	513
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.86	0.21		0.55	0.97			0.31	0.12	0.90	0.89	0.46

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 114.3


Natural Cycle: 115

Control Type: Actuated-Uncoordinated

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2031 Build (Combined)

Lanes, Volumes, Timings

Timing Plan: AM Peak

	→	•	(←	4	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDIX	YVDL	↑ ↑	NDL W	INDIX
Traffic Volume (vph)	451	100	145	883	12	10
Future Volume (vph)	451	100	145	883	12	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	1%	12	10	-1%	-3%	12
Storage Length (ft)	1 /0	0	200	-1/0	-5 /0	0
Storage Lanes		0	1		1	0
Taper Length (ft)		U	25		25	U
Right Turn on Red		Yes	23		20	No
•	35	168		35	25	INU
Link Speed (mph)						
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)						1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	11%	4%	13%	2%	0%	0%
Shared Lane Traffic (%)						
Lane Group Flow (vph)	568	0	149	910	22	0
Number of Detectors	2		1	2	1	
Detector Template			Left		Left	
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel	J. _,		V/.	V/\	V	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255		0.0	255	0.0	
\ /						
Detector 2 Size(ft)	6 CL Ev			6 CL Ev		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	^ ^			2.2		
Detector 2 Extend (s)	0.0		Б.	0.0	Б.	
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases						
Detector Phase	2		1	6	4	
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	41.0		33.0	74.0	16.0	
Total Split (%)	45.6%		36.7%	82.2%	17.8%	
Maximum Green (s)	35.0		27.0	68.0	10.0	
Yellow Time (s)	4.0		3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
				0.0	0.0	
Lead/Lag	Lag		Lead			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

	→	,		•	4	<i>></i>		
Lane Group	EBT	EBR W	/BL	WBT	NBL	NBR		
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Minimum Gap (s)	6.0		3.0	6.0	3.0			
Time Before Reduce (s)	15.0		5.0	15.0	5.0			
Time To Reduce (s)	15.0		5.0	15.0	5.0			
Recall Mode	Min	No	one	Min	None			
v/c Ratio	0.32	0	.41	0.27	0.09			
Control Delay	9.6	2	1.3	1.2	25.2			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	9.6	2	1.3	1.2	25.2			
Queue Length 50th (ft)	35		24	0	4			
Queue Length 95th (ft)	135		118	85	32			
Internal Link Dist (ft)	897			943	166			
Turn Bay Length (ft)			200					
Base Capacity (vph)	2630	,	952	3441	412			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.22	0	.16	0.26	0.05			
ntersection Summary								
Area Type:	Other							
Cycle Length: 90								
Actuated Cycle Length: 47	7							
Natural Cycle: 45								
Control Type: Actuated-U	ncoordinated							
Splits and Phases: 2: N	liddle Access	& Second Av	е					
ÿ1			— Ø:	2				↑ Ø4
33 s		4	1s					16 s
←								
Ø6 74 s								1

2031 Build (Combined) Timing Plan: AM Peak Lanes, Volumes, Timings

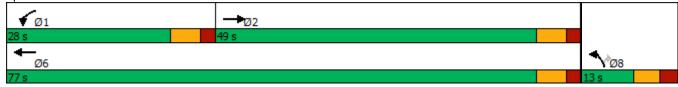
	→	•	•	←	1	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDI	**************************************	†	i i	7
Traffic Volume (vph)	531	242	149	745	30	13
Future Volume (vph)	531	242	149	745	30	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	1900	12	12	12
Grade (%)	1%	12	10	-1%	-3%	12
Storage Length (ft)	1 /0	0	230	-170	-570	0
Storage Lanes		0	1		1	1
Taper Length (ft)		U	25		25	
Right Turn on Red		Yes	2.0		2.0	Yes
Link Speed (mph)	35	163		35	25	163
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1			19.0	5.2	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	12%	2%	0.94	4%	0.94	0.94
	1270	۷%	U%	470	U%	U%
Shared Lane Traffic (%)	000	0	450	702	20	4.4
Lane Group Flow (vph)	822	0	159 1	793 2	32	14
Number of Detectors	2		1	2	1	1
Detector Template	004		40	004	40	40
Leading Detector (ft)	261		40	261	40	40
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel	^ ^		0.0	0.0		^ ^
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases						8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	49.0		28.0	77.0	13.0	13.0
Total Split (%)	54.4%		31.1%	85.6%	14.4%	14.4%
Maximum Green (s)	43.0		22.0	71.0	7.0	7.0
Yellow Time (s)	4.0		4.0	4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?						

6: Western Access & Second Ave

	-	•	•	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0
Recall Mode	Min		None	Min	None	None
v/c Ratio	0.50		0.50	0.27	0.17	0.08
Control Delay	11.2		32.9	2.4	36.8	19.5
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	11.2		32.9	2.4	36.8	19.5
Queue Length 50th (ft)	106		62	47	13	0
Queue Length 95th (ft)	177		135	65	44	18
Internal Link Dist (ft)	593			897	112	
Turn Bay Length (ft)			230			
Base Capacity (vph)	2244		627	3265	216	205
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.37		0.25	0.24	0.15	0.07

Intersection Summary

Area Type: Other


Cycle Length: 90

Actuated Cycle Length: 65.2

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

2031 Build (Combined) Timing Plan: AM Peak

	۶	→	•	•	←	•	•	†	/	/	Ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ β		7	∱β			र्स	7	ሻ	र्स	7
Traffic Volume (veh/h)	336	968	1	29	324	373	4	208	210	431	21	87
Future Volume (veh/h)	336	968	1	29	324	373	4	208	210	431	21	87
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.96	1.00		0.91	1.00		0.93
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1964	1949	1949	1939	1819	1819	2067	2067	2067	1934	1979	1995
Adj Flow Rate, veh/h	361	1041	1	31	348	401	4	224	226	479	0	94
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	2	2	0	8	8	2	2	2	3	0	4
Cap, veh/h	391	1729	2	70	492	420	5	263	274	625	0	622
Arrive On Green	0.21	0.46	0.46	0.04	0.28	0.28	0.13	0.13	0.13	0.17	0.00	0.17
Sat Flow, veh/h	1870	3795	4	1847	1728	1477	36	2029	1601	3683	0	1580
Grp Volume(v), veh/h	361	508	534	31	348	401	228	0	226	479	0	94
Grp Sat Flow(s),veh/h/ln	1870	1851	1948	1847	1728	1477	2065	0	1601	1842	0	1580
Q Serve(g_s), s	21.9	23.8	23.8	1.9	20.9	30.9	12.5	0.0	15.0	14.4	0.0	4.6
Cycle Q Clear(g_c), s	21.9	23.8	23.8	1.9	20.9	30.9	12.5	0.0	15.0	14.4	0.0	4.6
Prop In Lane	1.00		0.00	1.00		1.00	0.02		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	391	843	887	70	492	420	267	0	274	625	0	622
V/C Ratio(X)	0.92	0.60	0.60	0.44	0.71	0.95	0.85	0.00	0.82	0.77	0.00	0.15
Avail Cap(c_a), veh/h	420	843	887	191	492	420	267	0	274	699	0	654
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	44.9	23.7	23.7	54.5	37.1	40.7	49.4	0.0	46.8	45.9	0.0	23.8
Incr Delay (d2), s/veh	25.1	2.6	2.5	4.3	7.3	33.4	22.5	0.0	18.2	4.6	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.7	10.7	11.2	1.0	9.7	14.9	8.2	0.0	7.7	7.0	0.0	1.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	70.0	26.3	26.2	58.8	44.5	74.1	71.8	0.0	65.0	50.5	0.0	23.9
LnGrp LOS	Е	С	С	Е	D	Е	Е	Α	Е	D	Α	<u>C</u>
Approach Vol, veh/h		1403			780			454			573	
Approach Delay, s/veh		37.5			60.3			68.4			46.1	
Approach LOS		D			Е			Е			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	30.2	39.0		21.0	10.4	58.8		25.7				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	26.0	33.0		15.0	12.0	47.0		22.0				
Max Q Clear Time (g c+l1), s	23.9	32.9		17.0	3.9	25.8		16.4				
Green Ext Time (p_c), s	0.3	0.1		0.0	0.0	17.5		1.4				
Intersection Summary												
HCM 6th Ctrl Delay			48.9									
HCM 6th LOS			D									
Notes												

	→	•	•	←	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† ‡	LUIT	YVDL	↑ ↑	₩.	HUIN
Traffic Volume (veh/h)	1242	24	30	401	90	73
Future Volume (veh/h)	1242	24	30	401	90	73
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1864	1864	1504	1849	2018	2018
Adj Flow Rate, veh/h	1280		31	413	93	75
		25				
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2	29	6	0	0
Cap, veh/h	2065	40	47	2467	120	97
Arrive On Green	0.58	0.58	0.03	0.70	0.12	0.12
Sat Flow, veh/h	3647	69	1432	3606	994	802
Grp Volume(v), veh/h	638	667	31	413	169	0
Grp Sat Flow(s),veh/h/ln	1771	1852	1432	1757	1807	0
Q Serve(g_s), s	16.0	16.0	1.4	2.7	6.1	0.0
Cycle Q Clear(g_c), s	16.0	16.0	1.4	2.7	6.1	0.0
Prop In Lane		0.04	1.00		0.55	0.44
Lane Grp Cap(c), veh/h	1029	1076	47	2467	218	0.11
V/C Ratio(X)	0.62	0.62	0.66	0.17	0.78	0.00
Avail Cap(c_a), veh/h	1230	1286	169	3165	454	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	9.3	9.3	32.4	3.4	28.9	0.0
Incr Delay (d2), s/veh	0.7	0.7	14.9	0.0	5.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.9	5.2	0.7	0.6	2.9	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	10.0	10.0	47.3	3.4	34.7	0.0
LnGrp LOS	Α	Α	D	Α	С	Α
Approach Vol, veh/h	1305			444	169	
Approach Delay, s/veh	10.0			6.5	34.7	
Approach LOS	Α			A	C	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	8.2	45.3		14.2		53.5
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0
Max Green Setting (Gmax), s	8.0	47.0		17.0		61.0
Max Q Clear Time (g_c+I1), s	3.4	18.0		8.1		4.7
Green Ext Time (p_c), s	0.0	21.4		0.4		7.6
` '	0.0	21		0.1		7.0
Intersection Summary						
HCM 6th Ctrl Delay			11.3			
HCM 6th LOS			В			
N						
Notes						

	-	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†	LDIX	ሻ	^	¥	7	
Traffic Volume (veh/h)	1191	76	20	456	251	91	
Future Volume (veh/h)	1191	76	20	456	251	91	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	· ·	1.00	1.00	· ·	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1864	1864	1939	1864	2003	2018	
Adj Flow Rate, veh/h	1228	78	21	470	259	94	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	0	5	1	0	
Cap, veh/h	1862	118	44	2333	329	295	
Arrive On Green	0.55	0.55	0.02	0.66	0.17	0.17	
Sat Flow, veh/h	3476	215	1847	3635	1908	1710	
Grp Volume(v), veh/h	642	664	21	470	259	94	
Grp Sat Flow(s), veh/h/ln	1771	1826	1847	1771	1908	1710	
Q Serve(g_s), s	18.2	18.3	0.8	3.7	9.2	3.4	
Cycle Q Clear(g_c), s	18.2	18.3	0.8	3.7	9.2	3.4	
Prop In Lane	10.2	0.12	1.00	3.1	1.00	1.00	
Lane Grp Cap(c), veh/h	975	1005	44	2333	329	295	
V/C Ratio(X)	0.66	0.66	0.48	0.20	0.79	0.32	
. ,	1121	1156	130	2790	590	529	
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
			1.00		1.00	1.00	
Upstream Filter(I)	1.00	1.00		1.00	28.2	25.8	
Uniform Delay (d), s/veh	11.3 1.2	11.3	34.3	4.8	4.2		
Incr Delay (d2), s/veh		1.1	7.8	0.0		0.6	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	6.1	6.3	0.4	1.0	4.5	1.4	
Unsig. Movement Delay, s/veh		40.4	40.0	4.0	20.4	00.4	
LnGrp Delay(d),s/veh	12.4	12.4	42.0	4.8	32.4	26.4	
LnGrp LOS	В	В	D	A	С	С	
Approach Vol, veh/h	1306			491	353		
Approach Delay, s/veh	12.4			6.4	30.8		
Approach LOS	В			Α	С		
Timer - Assigned Phs	1	2				6	
Phs Duration (G+Y+Rc), s	7.7	45.1				52.8	
Change Period (Y+Rc), s	6.0	6.0				6.0	
Max Green Setting (Gmax), s	5.0	45.0				56.0	
Max Q Clear Time (g_c+l1), s	2.8	20.3				5.7	
Green Ext Time (p_c), s	0.0	18.9				8.7	
Intersection Summary							
HCM 6th Ctrl Delay			14.1				
HCM 6th LOS			В				
Notes							

Lanes, Volumes, Timings 1: Technology Dr/Bates St & Second Ave

	۶	→	*	€	+	•	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	∱ }		ň	∱ ∱			ની	7	7	4	7
Traffic Volume (vph)	336	968	1	29	324	373	4	208	210	431	21	87
Future Volume (vph)	336	968	1	29	324	373	4	208	210	431	21	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	12	12	10	12	12	12	12	12	11	11	13
Grade (%)		-2%			-1%			-5%			-2%	
Storage Length (ft)	580		0	100		0	0		0	0		85
Storage Lanes	1		0	1		0	0		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			No			No			No			No
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		1023			612			255			258	
Travel Time (s)		19.9			11.9			7.0			7.0	
Confl. Peds. (#/hr)	11		24	24		11	3		37	37		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	1%	2%	0%	0%	8%	5%	0%	2%	2%	3%	0%	4%
Shared Lane Traffic (%)										48%		
Lane Group Flow (vph)	361	1042	0	31	749	0	0	228	226	241	245	94
Number of Detectors	1	1	•	1	1	-	1	1	1	1	1	1
Detector Template	Left	•		•	•		Left			•	•	
Leading Detector (ft)	40	231		40	231		20	40	40	40	40	40
Trailing Detector (ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Position(ft)	0	225		0	225		0	0	0	0	0	0
Detector 1 Size(ft)	40	6		40	6		20	40	40	40	40	40
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	NA		Prot	NA		Split	NA	pm+ov	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	5	. 8	8	1
Permitted Phases									4			8
Detector Phase	1	6		5	2		4	4	5	8	8	1
Switch Phase												
Minimum Initial (s)	7.0	15.0		7.0	15.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	37.0		13.0	37.0		13.0	13.0	13.0	28.0	28.0	13.0
Total Split (s)	32.0	53.0		18.0	39.0		21.0	21.0	18.0	28.0	28.0	32.0
Total Split (%)	26.7%	44.2%		15.0%	32.5%		17.5%	17.5%	15.0%	23.3%	23.3%	26.7%
Maximum Green (s)	26.0	47.0		12.0	33.0		15.0	15.0	12.0	22.0	22.0	26.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		3.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			Lead
Lead-Lag Optimize?		3			9							
Vehicle Extension (s)	3.0	6.0		3.0	6.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min		None	Min		None	None	None	None	None	None
Walk Time (s)	. 10.10	11.0			11.0					4.0	4.0	
Flash Dont Walk (s)		20.0			20.0					18.0	18.0	
- Idon Bont Walk (b)		20.0			20.0					10.0	10.0	

2031 Build (Combined) Timing Plan: PM Peak

1: Technology Dr/Bates St & Second Ave

	•	→	•	•	←	•	4	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)		0			0					0	0	
v/c Ratio	0.96	0.72		0.21	0.99dr			0.93	0.66	0.86	0.86	0.15
Control Delay	84.0	33.4		53.5	57.3			93.8	33.6	75.0	75.1	20.2
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay	84.0	33.4		53.5	57.3			93.8	33.6	75.0	75.1	20.2
Queue Length 50th (ft)	281	354		23	293			178	98	190	193	42
Queue Length 95th (ft)	#478	442		54	#402			#337	150	#329	#333	75
Internal Link Dist (ft)		943			532			175			178	
Turn Bay Length (ft)	580			100								85
Base Capacity (vph)	375	1461		174	868			245	362	306	310	637
Starvation Cap Reductn	0	0		0	0			0	0	0	0	0
Spillback Cap Reductn	0	0		0	0			0	0	0	0	0
Storage Cap Reductn	0	0		0	0			0	0	0	0	0
Reduced v/c Ratio	0.96	0.71		0.18	0.86			0.93	0.62	0.79	0.79	0.15

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 116.9

Natural Cycle: 105

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

Splits and Phases: 1: Technology Dr/Bates St & Second Ave

2031 Build (Combined)

Lanes, Volumes, Timings

Timing Plan: PM Peak

	→	*	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIX	YVDL	↑ ↑	₩.	HUIT
Traffic Volume (vph)	1242	24	30	401	90	73
Future Volume (vph)	1242	24	30	401	90	73
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	1900	1300	12	1300
Grade (%)	1%	12	10	-1%	-3%	14
Storage Length (ft)	1 /0	0	200	1 /0	-5 /0	0
Storage Lanes		0	1		1	0
Taper Length (ft)		U	25		25	U
Right Turn on Red		Yes	20		20	No
Link Speed (mph)	35	169		35	25	INU
Link Distance (ft)	977			1023	246	
Travel Time (s)	19.0			19.9	6.7	
Confl. Peds. (#/hr)	19.0			19.9	0.7	7
	0.07	0.07	0.07	0.07		
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	10%	29%	6%	0%	0%
Shared Lane Traffic (%)	4005	^	0.4	440	400	•
Lane Group Flow (vph)	1305	0	31	413	168	0
Number of Detectors	2		1	2	1	
Detector Template	004		Left	004	Left	
Leading Detector (ft)	261		40	261	40	
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	6		40	6	40	
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	4	
Permitted Phases						
Detector Phase	2		1	6	4	
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	
Minimum Split (s)	21.0		11.5	21.0	11.5	
Total Split (s)	53.0		14.0	67.0	23.0	
Total Split (%)	58.9%		15.6%	74.4%	25.6%	
Maximum Green (s)	47.0		8.0	61.0	17.0	
Yellow Time (s)	4.0		3.5	4.0	3.5	
All-Red Time (s)	2.0		2.5	2.0	2.5	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	Lag		Lead	0.0	0.0	
L-bau/Lay	Lay		LEdu			

Lanes, Volumes, Timings 2: Middle Access & Second Ave

	-	\rightarrow	•	←	1	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Minimum Gap (s)	6.0		3.0	6.0	3.0		
Time Before Reduce (s)	15.0		5.0	15.0	5.0		
Time To Reduce (s)	15.0		5.0	15.0	5.0		
Recall Mode	Min		None	Min	None		
v/c Ratio	0.61		0.26	0.18	0.58		
Control Delay	12.6		42.0	5.0	39.6		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	12.6		42.0	5.0	39.6		
Queue Length 50th (ft)	147		13	33	68		
Queue Length 95th (ft)	359		45	56	151		
Internal Link Dist (ft)	897			943	166		
Turn Bay Length (ft)			200				
Base Capacity (vph)	2185		139	2767	393		
Starvation Cap Reductn	0		0	0	0		
Spillback Cap Reductn	0		0	0	0		
Storage Cap Reductn	0		0	0	0		
Reduced v/c Ratio	0.60		0.22	0.15	0.43		
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 76.5	9						
Natural Cycle: 60							
Control Type: Actuated-Und	coordinated						
Splits and Phases: 2: Mid	ddle Access	& Secon	d Ave				
	1 Ø2	2. 000011					♦ Ø4
14s 53s	WZ						23 s
← Ø6							
<u>и</u> о							

	→	•	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† ‡		ኘ	↑ ↑	¥	7
Traffic Volume (vph)	1191	76	20	456	251	91
Future Volume (vph)	1191	76	20	456	251	91
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	1%	12	10	-1%	-3%	12
	1 70	٥	230	-170		٥
Storage Length (ft)		0	230		0	0
Storage Lanes		U	25		25	
Taper Length (ft)		V	25		25	V
Right Turn on Red	٥٦	Yes		25	٥٦	Yes
Link Speed (mph)	35			35	25	
Link Distance (ft)	673			977	192	
Travel Time (s)	13.1			19.0	5.2	
Confl. Peds. (#/hr)					3	1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	4%	0%	5%	1%	0%
Shared Lane Traffic (%)						10%
Lane Group Flow (vph)	1306	0	21	470	268	85
Number of Detectors	2		1	2	1	1
Detector Template						
Leading Detector (ft)	261		40	261	40	40
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		40	6	40	40
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OI · LA		OI LX	OI · LX	OI · LX	OI · LX
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
	0.0		0.0		0.0	
Detector 1 Delay (s)			0.0	0.0	0.0	0.0
Detector 2 Position(ft)	255			255		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases						8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0		5.0	15.0	5.0	5.0
Minimum Split (s)	21.0		11.0	21.0	11.0	11.0
Total Split (s)	51.0		11.0	62.0	28.0	28.0
Total Split (%)	56.7%		12.2%	68.9%	31.1%	31.1%
Maximum Green (s)	45.0		5.0	56.0	22.0	22.0
			4.0			
Yellow Time (s)	4.0			4.0	3.5	3.5
All-Red Time (s)	2.0		2.0	2.0	2.5	2.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	Lag		Lead			

2031 Build (Combined) Timing Plan: PM Peak

	→	\rightarrow	•	←	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Minimum Gap (s)	6.0		3.0	6.0	5.0	5.0	
Time Before Reduce (s)	15.0		0.0	15.0	0.0	0.0	
Time To Reduce (s)	15.0		0.0	15.0	0.0	0.0	
Recall Mode	Min		None	Min	None	None	
v/c Ratio	0.66		0.18	0.22	0.68	0.21	
Control Delay	14.7		42.4	6.8	38.1	8.2	
Queue Delay	0.0		0.0	0.0	0.0	0.0	
Total Delay	14.7		42.4	6.8	38.1	8.2	
Queue Length 50th (ft)	164		9	43	111	0	
Queue Length 95th (ft)	379		35	78	216	36	
Internal Link Dist (ft)	593			897	112		
Turn Bay Length (ft)			230				
Base Capacity (vph)	2187		117	2640	556	529	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.60		0.18	0.18	0.48	0.16	
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 74.	7						
Natural Cycle: 60							
Control Type: Actuated-Und	coordinated						
Splits and Phases: 6: We	estern Access	s & Seco	nd Ave				
√ Ø1 →Ø2							
11s 51s							
Ø6							

2031 Build (Combined) Timing Plan: PM Peak